6.70, 6.700, 6.7000, 6.70000, and so on.
Sebastian ran 1.44 miles in the last 24 minutes. First, divide 8.64 by 2.4 to get 3.6 miles per hour. Since the question is asking for the last 24 minutes, divide 3.6 by 60 which gives you 0.06. Then, just multiply the rate per minute by 24 which gives you how many miles he ran in the last 24 minutes of his run.
M = mangoes
a = apples
8m + 3a = 18 Equation 1
3m + 5a = 14.50 Equation 2
Lets multiply equation 1 by 5 and equation 2 by 3
The new equations are:
45m + 15a = 90
9m + 15a = 43.5
Subtract them and get:
36m = 46.5
m = 1.30 Divide both sides by 36
Substitute m into equation 2 (either is fine, but choose the easier one)
3(1.30) + 5a = 14.5
3.9 + 5a = 14.6 Expand the bracket
5a = 10.6 Minus both sides by 3.9
a = 2.12 Divide both sides by 5
Mangoes cost $1.30
Apples cost $2.12 (more like $2.10)
I feel that my working out is wrong, but that is how you work out the answer.
Answer:

Step-by-step explanation:
![( \frac{625}{16} {)}^{ \frac{1}{4} } \\ \sqrt[4]{ \frac{625}{16} } = \frac{ \sqrt[4]{625} }{ \sqrt[4]{16} } \\ \frac{ \sqrt[4]{ {5}^{4} } }{ \sqrt[4]{16} } = \frac{ \sqrt[4]{ {5}^{4} } }{ \sqrt[4]{ {2}^{4} } } = \frac{5}{2}](https://tex.z-dn.net/?f=%28%20%5Cfrac%7B625%7D%7B16%7D%20%20%7B%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B4%7D%20%7D%20%20%5C%5C%20%20%5Csqrt%5B4%5D%7B%20%5Cfrac%7B625%7D%7B16%7D%20%7D%20%20%3D%20%20%5Cfrac%7B%20%5Csqrt%5B4%5D%7B625%7D%20%7D%7B%20%5Csqrt%5B4%5D%7B16%7D%20%7D%20%20%20%5C%5C%20%20%5Cfrac%7B%20%5Csqrt%5B4%5D%7B%20%7B5%7D%5E%7B4%7D%20%7D%20%7D%7B%20%5Csqrt%5B4%5D%7B16%7D%20%7D%20%20%3D%20%20%5Cfrac%7B%20%5Csqrt%5B4%5D%7B%20%7B5%7D%5E%7B4%7D%20%7D%20%7D%7B%20%5Csqrt%5B4%5D%7B%20%7B2%7D%5E%7B4%7D%20%7D%20%7D%20%20%3D%20%20%5Cfrac%7B5%7D%7B2%7D%20)

Answer:
C. No solution
Step-by-step explanation:
System of Equations:
A) 
B) 
Simplifying and rearranging equation A.
Dividing each term by 3 (common factor for each term) in equation A.


Subtracting both sides by 


Adding 7 both sides.

Adding the above equation to equation B.
+ 
We have
which is not true.
Hence the system has no solution. (Answer)