Hello!
The atomic number is determined only by the number of protons in the nucleus of an atom. But, in a neutral atom it also represents the number of electrons in the electron cloud.
Neutrons are only important in the nucleus for helping us find atomic weight, which varies as we move along the perodic table and does not always equal the same amount of it's atomic number. Which is why it would not be a suitable answer for the first blank space. Electrons do not work either as they do not exist inside the nucleus but rather outside the atom.
The second space, since it states is in the electron cloud, we can deduct that electrons would be an appropriate answer there.
If you need anymore help feel free to ask, but I hope this answers your question.
Answer:
39.2 g
Explanation:
- 2Ni₂O₃(s) ⟶ 4Ni(s) + 3O₂(g)
First we <u>convert 55.3 grams of Ni₂O₃ into moles of Ni₂O₃</u>, using its<em> molar mass</em>:
- 55.3 g ÷ 165.39 g/mol = 0.334 mol Ni₂O₃
Then we <u>convert 0.334 moles of Ni₂O₃ into moles of Ni</u>, using the <em>stoichiometric coefficients of the balanced reaction</em>:
- 0.334 mol Ni₂O₃ *
= 0.668 mol Ni
Finally we <u>calculate how much do 0.668 Ni moles weigh</u>, using the<em> molar mass of Ni </em>:
- 0.668 mol Ni * 58.69 g/mol = 39.2 g
<u>Answer:</u> The wavelength of spectral line is 656 nm
<u>Explanation:</u>
To calculate the wavelength of light, we use Rydberg's Equation:

Where,
= Wavelength of radiation
= Rydberg's Constant = 
= Final energy level = 2
= Initial energy level = 3
Putting the values in above equation, we get:

Converting this into nanometers, we use the conversion factor:

So, 
Hence, the wavelength of spectral line is 656 nm