Answer:
the work that must be done to stop the hoop is 2.662 J
Explanation:
Given;
mass of the hoop, m = 110 kg
speed of the center mass, v = 0.22 m/s
The work that must be done to stop the hoop is equal to the change in the kinetic energy of the hoop;
W = ΔK.E
W = ¹/₂mv²
W = ¹/₂ x 110 x 0.22²
W = 2.662 J
Therefore, the work that must be done to stop the hoop is 2.662 J
Answer:
They conduct thermal energy from inside the house and release it outside the house. ... It reduces the amount of thermal energy that is transferred from outside to inside the container
Where Gravity rely's on only mass and distance and nothing else, so the weight on the planets will vary like you have stated. However Mars is smaller than Mercury, so the weight on Mars will be less, and the weight on Mercury will be more. Think this way.
More Mass = More Gravity = More Weight
Less Mass = Less Gravity = Less Weight
Answer:
plastic
Explanation:
because it is an insulator that it is a poor conductor of electricity.
<span>The centripetal force for such an arrangement can be found through the equation Fc = mv^2/r where m is the mass of the rotating object, v is that object's velocity, and r is the radius of rotation. In this case, we know that the maximum Fc that can be tolerated by the cord is 64N. Thus we set the equation up and solve for the value of v for which Fc = 64.
64 = 0.4*(v^2)/1
64/0.4 = 160 =
v^2
v = sqrt(160) = 12.65 m/s
At any speed faster than 12.65 m/s, the cord will break.</span>