Work is force*displacement if the force and displacement is parallel.
a. You can average the force over the distance so W = Fave*d
<span>b The force part of that multiplication is zero. </span>
<span>c. You can form the average force for the interval from 2 to 3 and find the work for that section and then consider the interval from 3 to 4, find the work and add the 2 work results.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:
The answer for the above statement is:
C. High-visibility clothing is important to wear in areas with moving vehicles.
because in bright clothes you are easier to see, so people driving can see you.
Explanation:
Good question. It like a fail safe,if you hit a car tail gate going slightly fast it come out to protect you from hitting your on the the wheel or the mirror. See if you don't have a seat belt or it just don't fully stop you the airbag might help.Like concussions. I Hope This Help you :)
<span>E=hc/wav. len
E = (6.62 x 10^-34 x 3 x 10^8)/0.0275 x 10^-9
E = 7.22182 x 10^-15 J
To convert to eV divide by 1.6 x 10^-19
E = 7.22182 x 10^-15/1.6 x 10^-19 eV
E =45.36 x 10^3 eV
Th energy, E, of a single x-ray photon in eV is = 45.36keV.
Number of photons, n = total energy/ energy of photon
n = 3.85 x 10^-6/7.22182 x 10^-15
n = 5.33 x 10^8 photons </span>
<h2>Right answer: acceleration due to gravity is always the same </h2><h2 />
According to the experiments done and currently verified, in vacuum (this means there is not air or any fluid), all objects in free fall experience the same acceleration, which is <u>the acceleration of gravity</u>.
Now, in this case we are on Earth, so the gravity value is
Note the objects experience the acceleration of gravity regardless of their mass.
Nevertheless, on Earth we have air, hence <u>air resistance</u>, so the afirmation <em>"Free fall is a situation in which the only force acting upon an object is gravity" </em>is not completely true on Earth, unless the following condition is fulfiled:
If the air resistance is <u>too small</u> that we can approximate it to <u>zero</u> in the calculations, then in free fall the objects will accelerate downwards at
and hit the ground at approximately the same time.