Answer: the average speed of the rat from the information given above is 0.7m/s
Explanation:
position is given as
x(t) = pt² + qt
finding the diffencial of x(t) with respect to t, we have
d(x(t))/dt = 2pt + q
we substitute the p = 0.36m/s² and q= -1.10 m/s
d(x(t))/dt = 2(0.36)t + (-1.10)
so, at t= 1s
d(x(t))/dt = 2*(0.36)*1 - 1.1 = 0.72 - 1.1 = -0.38m/s
at t= 4s
d(x(t))/dt = 2*(0.36)*4 - 1.10 = 2.88 - 1.10 = 1.78 m/s
To find the average speed,
average speed = (V1 + V2)/ 2
average speed = (1.78 + (-0.38))/2 = 0.7m/s
Answer: a) 6.67cm/s b) 1/2
Explanation:
According to law of conservation of momentum, the momentum of the bodies before collision is equal to the momentum of the bodies after collision. Since the second body was initially at rest this means the initial velocity of the body is "zero".
Let m1 and m2 be the masses of the bodies
u1 and u2 be their velocities respectively
m1 = 5.0g m2 = 10.0g u1 = 20.0cm/s u2 = 0cm/s
Since momentum = mass × velocity
The conservation of momentum of the body will be
m1u1 + m2u2 = (m1+m2)v
Note that the body will move with a common velocity (v) after collision which will serve as the velocity of each object after collision.
5(20) + 10(0) = (5+10)v
100 + 0 = 15v
v = 100/15
v = 6.67cm/s
Therefore the velocity of each object after the collision is 6.67cm/s
b) kinectic energy of the 10.0g object will be 1/2MV²
= 1/2×10×6.67²
= 222.44Joules
kinectic energy of the 5.0g object will be 1/2MV²
= 1/2×5×6.67²
= 222.44Joules
= 111.22Joules
Fraction of the initial kinetic transferred to the 10g object will be
111.22/222.44
= 1/2
Hello.
The answer would be <span> 0.5 s
Have a nice day</span>
The speed is 0.956 m / s.
<u>Explanation</u>:
The kinetic energy is equal to the product of half of an object's mass, and the square of the velocity.
K.E = 1/2
m

where K.E represents the kinetic energy,
m represents the mass,
v represents the velocity.
K.E = 1/2
m

1.10
10^42 = 1/2
3.26
10^31

= (1.10
10^42
2) / (3.26
10^31)
v = 0.956 m / s.
The strength of the gravitational force between two objects depends on two factors, mass and distance. the force of gravity the masses exert on each other. If one of the masses is doubled, the force of gravity between the objects is doubled. increases, the force of gravity decreases.