1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tanzania [10]
3 years ago
7

Two stationary point charges of 3.00 nC and 2.00 nC are separated by a distance of 50.0 cm. An electron is released from rest at

a point midway between the charges and moves along the line connecting them. What is the electric potential energy of the electron when it is
1. at the midpoint?
2. 10.0 cm from the 3.00 nC charge?
Physics
1 answer:
andrew-mc [135]3 years ago
3 0

Answer:

1. the electric potential energy of the electron when it is  at the midpoint is - 2.9 x 10^{-17} J

2. the electric potential energy of the electron when it is 10.0 cm from the 3.00 nC charge is - 5.04 x  10^{-17} J

Explanation:

given information:

q_{1} =  3 nC = 3 x 10^{-9} C

q_{2} =  2 nC = 2 x 10^{-9} C

r = 50 cm = 0.5 m

the electric potential energy of the electron when it is  at the midpoint

potential energy of the charge, F

F = k \frac{q_{e}q}{r}

where

k = constant (8.99 x 10^{9} Nm^{2} /C^{2})

electron charge, q_{e} = - 1.6 x 10^{-19} C

since it is measured at the midpoint,

r = \frac{0.5}{2}

  = 0.25 m

thus,

F = F_{1}+ F_{2}

  = k\frac{q_{e} q_{1} }{r} + k\frac{q_{e} q_{2} }{r}

  = \frac{kq_{e} }{r} (q_{1} +q_{2})

  = (8.99 x 10^{9})( - 1.6 x 10^{-19} )(3 x 10^{-9} +2 x 10^{-9})/0.25

  = - 2.9 x 10^{-17} J

the electric potential energy of the electron when it is 10.0 cm from the 3.00 nC charge

r_{1} = 10 cm = 0.1 m

r_{2} = 0.5 - 0.1 = 0.4 m

F = k\frac{q_{e} q_{1} }{r} + k\frac{q_{e} q_{2} }{r}

  = kq_{e}(\frac{q_{1} }{r_{1} }+\frac{q_{2} }{r_{2} })

  = (8.99 x 10^{9})( - 1.6 x 10^{-19} )(3 x 10^{-9} /0.1+2 x 10^{-9}/0.4)

  = - 5.04 x  10^{-17} J

You might be interested in
g A high-energy photon turns into and electron and a positron. (A positron has exactly the same mass as the electron, but opposi
yawa3891 [41]

Answer:

2 m = E / c^2      where m is mass of electron

E = h v     where v is the frequency ( nu) of the incident photon

E = h c / y      where y is the incident wavelength (lambda)

2 m = h / (c y)

y = h / (2 m c)      wavelength required

y = 6.62 * 10E-34 / (2 * 9.1 * 10E-31 * 3 * 10E8)  m

y = 3.31 / 27.3 E-11 m

y = 1.21 E -12 m   = .0121 Angstrom units

5 0
3 years ago
Why do people lie .-.
Kitty [74]
Lots of reasons. one reason i lie alot (a very bad habit) is im scared of what will happen if i tell the truth. the truth is always better, though.
5 0
3 years ago
Read 2 more answers
Describe the motion represented by a horizontal line on a distance-time graph.
denpristay [2]

Answer:

hi, this is the answer

Explanation:

A horizontal line on a distance-time graph shows no change in distance, therefore there is no motion.

The object is stationary. ...

Constant speed is motion that occurs with the same ratio of distance to time throughout the entire length of the motion.

pls mark this as the brainliest...

3 0
3 years ago
A satellite, orbiting the earth at the equator at an altitude of 400 km, has an antenna that can be modeled as a 1.76-m-long rod
ivann1987 [24]

Answer:

The inducerd emf is 1.08 V

Solution:

As per the question:

Altitude of the satellite, H = 400 km

Length of the antenna, l = 1.76 m

Magnetic field, B = 8.0\times 10^{- 5}\ T

Now,

When a conducting rod moves in a uniform magnetic field linearly with velocity, v, then the potential difference due to its motion is given by:

e = - l(vec{v}\times \vec{B})

Here, velocity v is perpendicular to the rod

Thus

e = lvB           (1)

For the orbital velocity of the satellite at an altitude, H:

v = \sqrt{\frac{Gm_{E}}{R_{E}} + H}

where

G = Gravitational constant

m_{e} = 5.972\times 10^{24}\ kg = mass of earth

R_{E} = 6371\ km = radius of earth

v = \sqrt{\frac{6.67\times 10^{- 11}\times 5.972\times 10^{24}}{6371\times 1000 + 400\times 1000} = 7670.018\ m/s

Using this value value in eqn (1):

e = 1.76\times 7670.018\times 8.0\times 10^{- 5} = 1.08\ V

5 0
3 years ago
How does a television have a negative effect on the environment
max2010maxim [7]

Answer:

Too much screen time can be a bad thing: Children who consistently spend more than 4 hours per day watching TV are more likely to be overweight. Kids who view violent acts on TV are more likely to show aggressive behavior, and to fear that the world is scary and that something bad will happen to them. When we considered the whole television chain of production, distribution and consumption, we found that the largest environmental impact associated with a television programme was not the energy consumed in making it, but the energy used by the millions of televisions, set-top boxes and other consumer devices involved

Explanation:

8 0
3 years ago
Other questions:
  • Two skaters begin at rest. Skater 1 has a smaller mass than Skater 2. After they push off each other,...
    15·2 answers
  • 300 g2 divide by 0.0005 g in scientific notation
    13·1 answer
  • "Two waves of the same frequency have amplitudes 1.00 and 2.00. They interfere at a point where their phase difference is 60.0°.
    9·1 answer
  • A concrete piling of 50 kg is suspended from a steel wire of diameter 1.0 mm and length 11.2 m. How much will the wire stretch?
    6·1 answer
  • Peter throws a snowball at his car parked in the driveway. The snowball disintegrates as it hits the car. By Newton’s third law,
    10·2 answers
  • How is gravity best described?
    6·2 answers
  • The race car was was moving for 3.7 hours and during that time moved 500 miles east. What is the speed? What is the velocity?
    13·1 answer
  • The coefficients of friction between the 20-kg crate and the inclined surface are µ,8 = 0.24 and J.lk = 0.22. If the crate start
    5·1 answer
  • What does flowing electrical charge produce?
    7·1 answer
  • A spring is compressed so that it has 7.2 J of elastic potential energy. A 0.3 kg ball is placed on top of the spring. When the
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!