Answer:
9m^3
Explanation:
Given data
volume v1= 3m^3
volume v2= ???
Temperature T1= 20.0°C.
Temperature T2= 60.0°C.
Applying the relation for temperature and volume
V1/T1= V2/T2
substitute
3/20= V2/60
3*60= V2*20
180= 20*V2
180/20= V2
V2= 9m^3
Hence the final volume is 9m^3
Answer:
Incomplete questions
Let assume we are asked to find
Calculate the induced emf in the coil at any time, let say t=2
And induced current
Explanation:
Flux is given as
Φ=NAB
Where
N is number of turn, N=1
A=area=πr²
Since r=2cm=0.02
A=π(0.02)²=0.001257m²
B=magnetic field
B(t)=Bo•e−t/τ,
Where Bo=3T
τ=0.5s
B(t)=3e(−t/0.5)
B(t)=3exp(-2t)
Therefore
Φ=NAB
Φ=0.001257×3•exp(-2t)
Φ=0.00377exp(-2t)
Now,
Induce emf is given as
E= - dΦ/dt
E= - 0.00377×-2 exp(-2t)
E=0.00754exp(-2t)
At t=2
E=0.00754exp(-4)
E=0.000138V
E=0.138mV
b. Induce current
From ohms laws
V=iR
Given that R=0.6Ω
i=V/R
i=0.000138/0.6
i=0.00023A
i=0.23mA
The work done is positive and is equal to 20000 J
<h3>What is work done?</h3>
Work done is defined as the product of force and the distance moved by the force.
Mathematically:
- Work done = force * distance
The work done by the force = 20 * 1000 = 20000J
The work done is positive and is equal to 20000 J
Learn more about work done at: brainly.com/question/25923373
#SPJ1
The heat transferred by the steam to the skin is given by

where
m is the mass of the steam

is the latent heat of vaporization.
In our problem, the mass of the steam is (converting into kg)

while the latent heat of vaporization of the steam is

Substituting into the previous formula, we find the heat transferred to the skin:
Answer:
Explanation:
1. What are the forces acting on the block when it is hanging freely from the spring scale? What is the net force on the block? What are the magnitudes of each of the forces acting on the block? Explain.
When a block is hanging freely, two forces are acting on it = tension force from the spring scale and gravity force on the block itself. The net force is zero as the block is not accelerating. The magnitudes of tension and gravity force are the same but in opposite directions.
2. What are the forces that act on the block when it is placed on the ramp and is held in place by the spring scale? What is the net force acting on the block? Explain. (Assume that the ramps are frictionless surfaces.)
There are three forces acting on the block when it is placed on the ramp and is held in place by the spring scale: as in 1, there are tension and gravity but there is a third force - reaction force from the ramp surface on the block that is perpendicular to the surface. Again the block is not moving so the net force is zero.
3. What is the magnitude of normal force acting on the block when it is resting on the flat surface? How does the normal force change as the angle of the ramp increases? Explain. (Assume that the ramps are frictionless surfaces.)
On flat surface, the normal force is equal to the gravity force of the block i.e. its weight. On a vertical surface, the normal force is equal to zero. For the angle of ramp, θ, the normal force = weight * cos θ.