Answer:
K/2
Explanation:
The law of conservation of mechanical energy states that the sum of the kinetic and potential energies is a constant at any point.
At maximum height, the glove has purely potential energy but at the bottom, it has purely kinetic energy.
The potential energy at the top = kinetic energy at the bottom. The potential energy is given by

At half height, this potential energy is

At this height, PE + KE = Constant = KE at bottom or PE at maximum height.


The answer is C.
Ionic compounds are those that bring together anions and cations bonded together by ionic bonds. The electrostatic forces of the different charges are significant in the bonds that make them strong hence require high energy to break them (high melting point). Due to the regular structure of ionic compound that tend to form lattices in solid form, when struck, they shatter along the lines of weakness of the lattice.
I want to say its cooled by reflection because of the foil, sun reflects off of the foil back into the atmosphere. I don't think it's conduction because I have the foil on my windows and it's never warm to the touch. it's not a liquid so I don't believe it's convection. The foil reflects the radiation so I don't think it's b, c or d. so I wanna say A but I'm not 100% sure
Answer:
fr = ½ m v₀²/x
Explanation:
This exercise the body must be on a ramp so that a component of the weight is counteracted by the friction force.
The best way to solve this exercise is to use the energy work theorem
W = ΔK
Where work is defined as the product of force by distance
W = fr x cos 180
The angle is because the friction force opposes the movement
Δk =
–K₀
ΔK = 0 - ½ m v₀²
We substitute
- fr x = - ½ m v₀²
fr = ½ m v₀²/x