1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AysviL [449]
3 years ago
9

Kara Less was applying her makeup when she drove into South's busy parking lot last Friday morning. Unaware that Lisa Ford was s

topped in her lane 30 feet ahead, Kara rear-ended Lisa's rented Taurus. Kara's 1300-kg car was moving at 11 m/s and stopped in 0.14 seconds.a. Determine the momentum change of Kara's car.b. Determine the impulse experienced by Kara's car.c. Determine the magnitude of the force experienced by Kara's car.
Physics
2 answers:
SOVA2 [1]3 years ago
6 0

Answer:

Explanation:

Given that,

Mass of kara car m =1300kg

Velocity at which kara car was moving Vi =11m/s

The car stopped after t= 0.14sec

Therefore the final velocity is Vf = 0m/s

a. What is the change in momentum?

Change is momentum can be determine using

∆p = ∆MV

∆p = M∆V

∆p = m(Vf-Vi)

∆p = 1300(0-11)

∆p = 1300×-11

∆p = —14,300 kgm/s

The change in momentum of kara's car is —14,300kgm/s.

b. Impulse felt be kara car?

Impulse can be determine by using Newton second law of motion

Ft = ∆p

Impulse is Ft

I = ∆p = -14,300kgm/s.

Then, the impulse felt by Kara's car is -14,300kgm/s

c. Magnitude of force experienced by Kara's car?

From the impulse formula,

Ft = ∆p

Therefore,

F = ∆p/t

F = -14,300/0.14

F = -102,142.9N.

F ≈ —102,143N

The force experienced by kara's is -102,143N.

We can also determined the deceleration of Kara's car

From Newton second law

F=ma

Then, a = F/m

a = -102,143/1300

a = -78.57m/s²

The negative sign show deceleration

We can also calculate the distance the car moved before coming to halt.

Using equation of motion

X =ut+½at²

X = 11×0.14 + ½(-78.57) × 0.14²

X = 1.54 —0.77

X = 0.77m

NikAS [45]3 years ago
3 0

Answer

given,

Mass of Kara's car = 1300 Kg

moving with speed = 11 m/s

time taken to stop = 0.14 s

final velocity = 0 m/s

distance between Lisa ford and Kara's car = 30 m

a) change in momentum of Kara's car

  Δ P = m Δ v                  

  \Delta P = m (v_f-v_i)

  \Delta P = 1300 (0 - 11)

  Δ P = - 1.43 x 10⁴ kg.m/s

b) impulse is equal to change in momentum of the car

    I = - 1.43 x 10⁴ kg.m/s

c) magnitude of force experienced by Kara

  I = F x t

 I is impulse acting on the car

 t is time

  - 1.43 x 10⁴= F x 0.14

    F = -1.021 x 10⁵ N

negative sign represents the direction of force

You might be interested in
What’s the answer ?????
Mice21 [21]

Answer:

<h2>Refer the attachment for answer and explanation please</h2>

Explanation:

This might surely help you ☺️❤️

7 0
3 years ago
I WILL MARK BRAINLIEST!!ASAP!!! Wet Lab - Coulomb's Law lab from edge!!
anyanavicka [17]

Answer:

i don't get what I have to do

8 0
2 years ago
You move a 25 n object 4 meters. find the work you did
d1i1m1o1n [39]
In physics, "work<span>" is when a force applied to an object moves the object in the same direction as the force. If someone pushes against a wall, no </span>work<span> is done on the system. It is calculated as follows:

Work = Force x distance
Work = 25 N x 4 meters
Work = 100 N.m</span>
5 0
3 years ago
Read 2 more answers
A car has a force of 2000N and a mass of 1000kg. What is the acceleration
Anastaziya [24]

Answer:

2m/s/s

Explanation:

The formula goes- F=MA

F-Force M-Mass & A-Acceleration

We need to rearrange this formula to find the acceleration-

A=F/M

All we need to do now is substitute the values in

A=2000N/1000kg

A=2m/s^2

In the given option the last option (2m/s/s) would be the ans, as it's the same as 2m/s^2

So ya, I guess that's all

6 0
2 years ago
create a formula giving the strength of the induced field (B) i terms of current (I) and the distance from the wire to the probe
iren [92.7K]
So we need to find the formula for magnetic field B using the current (I) and the distance from the probe (d). So, We know that the stronger the current I, the stronger the magnetic field B. That tells us that the I and B are proportional. Also we know that the strength of the magnetic field B is weaker as the distance d of the probe increases. That tells us that B and d are inversely proportional. So our formula should have B=(I/d)*c where c is a constant of proportionality. c=μ₀/2π where μ₀ is the permeability of free space. So finally our formula is B=(μ₀I)/(2πd). 
6 0
3 years ago
Other questions:
  • Which of the following is part of a atom
    9·2 answers
  • What causes a roller coaster to "lose" energy and stop? What force does it lose energy to? Give a detailed explanation that is e
    6·1 answer
  • Select all that apply. Which of the following astronomers supported the Earth-centered system?
    12·2 answers
  • A power plant produces 1000 MW to supply a city 40 km away. Current flows from the power plant on a single wire of resistance 0.
    11·1 answer
  • A 75.0 kg man sits on a massless cart that is on a horizontal surface. The cart is initially stationary and it can move without
    13·1 answer
  • A 1100 kg car pushes a 1800 kg truck that has a dead battery. When the driver steps on the accelerator, the drive wheels of the
    7·1 answer
  • An 8.0-ohm resistor and a 6.0-ohm resistor are connected in series with a battery. The potential difference across the 6.0-ohm r
    13·1 answer
  • The strongman lifts the pig by pulling down at position 1. How will the distance that he pulls down compare to the distance that
    6·2 answers
  • A rocket has a mass of 156,789 kg and is traveling at 45.6 m/s. How much kinetic energy does the rocket
    13·1 answer
  • Which has the greatest frictional force among this surfaces
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!