m = Mass of the refrigerator to be moved to third floor = 136 kg
g = Acceleration due to gravity by earth on the refrigerator being moved = 9.8 m/s²
h = Height to which the refrigerator is moved = 8 m
W = Work done in lifting the object
Work done in lifting the object is same as the gravitational potential energy gained by the refrigerator. hence
Work done = Gravitation potential energy of refrigerator
W = m g h
inserting the values
W = (136) (9.8) (8)
W = 10662.4 J
Answer:
All the physical world objects that comers in the contact to exert the force to each other. The contact forces are different from their names and what type of force they exert.
Explanation:
The cables and the ropes are the useful objects that exert the forces that can efficiently transfer the force from a significant distance.
It is noted that tension is a type of force that the rope can not simply push it away effectively. When push happened with rope, the rope goes to slack and lose all the tension that pulls at the first place. Tension only pull objects.
Answer:
Why do insects fly so high?
Because the angle of attack is so high, a lot of momentum is transferred downward into the flow. These two features create a large amount of lift force as well as some additional drag. The important feature, however, is the lift.
Why an Aeroplane flying has kinetic
A flying aeroplane has potential energy has it flies above the ground level. And since the aeroplane is flying motion is associated with it and thus possesses kinetic energy. Hence a flying aeroplane has both potential and kinetic energ
Explanation:
Answer:
the field at the center of solenoid 2 is 12 times the field at the center of solenoid 1.
Explanation:
Recall that the field inside a solenoid of length L, N turns, and a circulating current I, is given by the formula:
Then, if we assign the subindex "1" to the quantities that define the magnetic field (
) inside solenoid 1, we have:

notice that there is no dependence on the diameter of the solenoid for this formula.
Now, if we write a similar formula for solenoid 2, given that it has :
1) half the length of solenoid 1 . Then 
2) twice as many turns as solenoid 1. Then 
3) three times the current of solenoid 1. Then 
we obtain:

To respond to the question, we need the data provided with the question.