1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Olegator [25]
3 years ago
9

Why is space black if the sun is shining

Physics
1 answer:
faltersainse [42]3 years ago
5 0

Answer:One star can't light up a whole universe

Explanation:It is like saying one light can feel up the whole town which it can't  do.

You might be interested in
Heat in the amount of 100 kJ is transferred directly from a hot reservoir at 1320 K to a cold reservoir at 600 K. Calculate the
Zinaida [17]

Answer:0.0909 kJ/K

Explanation:

Given

Temperature of hot Reservoir T_h=1320 K

Temperature of cold Reservoir T_l=600 K

Heat of 100 kJ is transferred form hot reservoir to cold reservoir

Hot Reservoir is Rejecting heat therefore Q_1=-100 kJ

Heat is added to Reservoir therefore Q_2=100 kJ

Entropy change for system

\Delta s=\frac{Q_1}{T_1}+\frac{Q_2}{T_2}

\Delta s=\frac{-100}{1320}+\frac{100}{600}

\Delta s=-0.0757+0.1666=0.0909 kJ/K

As entropy change is Positive therefore entropy Principle is satisfied

         

4 0
3 years ago
Write the following number in scientific notation 156.60
Liula [17]

Answer:

1.566 x 10^2

Move the decimal to where the number being multiplied by 10^x is greater than 1 but less than 10. Then multiply it by 10^x

X is the number of times you moved the decimal, so in this case it would be 10^2

8 0
3 years ago
How much energy is stored in the electric field of a 50-μm-diameter cell with a 7.0-nm-thick cell wall whose dielectric constant
Nady [450]
:<span>  </span><span>Under the assumption that a cell is made up of two concentric spheres you find the surface are of the inside sphere which will be your A. 

You already have your separation and dielectric constant so just use the formula you stated towards the end of your question and you get 8.93x10^-11 Farads which is about 89pF</span>
7 0
3 years ago
Read 2 more answers
g A ball thrown straight up into the air is found to be moving at 7.94 m/s after falling 2.72 m below its release point. Find th
kati45 [8]

The ball has height <em>y</em> and velocity <em>v</em> at time <em>t</em> according to

<em>y</em> = <em>v</em>₀ <em>t</em> - 1/2 <em>g</em> <em>t</em> ²

and

<em>v</em> = <em>v</em>₀ - <em>g t</em>

where <em>v</em>₀ is its initial speed and <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity.

The ball is falling with a velocity of 7.94 m/s when it's 2.72 m below the release point, which at time <em>t </em>such that

-2.72 m = <em>v</em>₀ <em>t</em> - 1/2 <em>g</em> <em>t</em> ²

-7.94 m/s = <em>v</em>₀ - <em>g t</em>

Solve for <em>t</em> in the second equation:

<em>t </em>= (<em>v</em>₀ + 7.94 m/s)/<em>g</em>

Substitute this into the first equation and solve for <em>v</em>₀ :

-2.72 m = <em>v</em>₀ (<em>v</em>₀ + 7.94 m/s) /<em>g</em> - 1/2 <em>g</em> ((<em>v</em>₀ + 7.94 m/s)/<em>g</em>)²

-2.72 m = <em>v</em>₀²/<em>g</em> + (7.94 m/s) <em>v</em>₀/<em>g</em> - 1/2 (<em>v</em>₀ + 7.94 m/s)²/<em>g</em>

2 (-2.72 m) <em>g</em> = 2<em>v</em>₀² + 2 (7.94 m/s) <em>v</em>₀ - (<em>v</em>₀ + 7.94 m/s)²

2 (-2.72 m) (9.80 m/s²) = 2<em>v</em>₀² + (15.9 m/s) <em>v</em>₀ - (<em>v</em>₀² + (15.9 m/s) <em>v</em>₀ + 63.0 m²/s²)

-53.3 m²/s² = <em>v</em>₀² - 63.0 m²/s²

<em>v</em>₀² = 9.73 m²/s²

<em>v</em>₀ = 3.12 m/s

3 0
3 years ago
Find the quantity of heat needed
krok68 [10]

Answer:

Approximately 3.99\times 10^{4}\; \rm J (assuming that the melting point of ice is 0\; \rm ^\circ C.)

Explanation:

Convert the unit of mass to kilograms, so as to match the unit of the specific heat capacity of ice and of water.

\begin{aligned}m&= 100\; \rm g \times \frac{1\; \rm kg}{1000\; \rm g} \\ &= 0.100\; \rm kg\end{aligned}

The energy required comes in three parts:

  • Energy required to raise the temperature of that 0.100\; \rm kg of ice from (-10\; \rm ^\circ C) to 0\; \rm ^\circ C (the melting point of ice.)
  • Energy required to turn 0.100\; \rm kg of ice into water while temperature stayed constant.
  • Energy required to raise the temperature of that newly-formed 0.100\; \rm kg of water from 0\; \rm ^\circ C to 10\;\ rm ^\circ C.

The following equation gives the amount of energy Q required to raise the temperature of a sample of mass m and specific heat capacity c by \Delta T:

Q = c \cdot m \cdot \Delta T,

where

  • c is the specific heat capacity of the material,
  • m is the mass of the sample, and
  • \Delta T is the change in the temperature of this sample.

For the first part of energy input, c(\text{ice}) = 2100\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (0\; \rm ^\circ C) - (-10\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_1 &= c(\text{ice}) \cdot m(\text{ice}) \cdot \Delta T\\ &= 2100\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 2.10\times 10^{3}\; \rm J\end{aligned}.

Similarly, for the third part of energy input, c(\text{water}) = 4200\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (10\; \rm ^\circ C) - (0\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_3&= c(\text{water}) \cdot m(\text{water}) \cdot \Delta T\\ &= 4200\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 4.20\times 10^{3}\; \rm J\end{aligned}.

The second part of energy input requires a different equation. The energy Q required to melt a sample of mass m and latent heat of fusion L_\text{f} is:

Q = m \cdot L_\text{f}.

Apply this equation to find the size of the second part of energy input:

\begin{aligned}Q_2&= m \cdot L_\text{f}\\&= 0.100\; \rm kg \times 3.36\times 10^{5}\; \rm J\cdot kg^{-1} \\ &= 3.36\times 10^{4}\; \rm J\end{aligned}.

Find the sum of these three parts of energy:

\begin{aligned}Q &= Q_1 + Q_2 + Q_3 = 3.99\times 10^{4}\; \rm J\end{aligned}.

3 0
2 years ago
Other questions:
  • A car engine burns gas at 495 K, and exhausts to the air at 293 K. If it ran at the highest possible efficiency, how much input
    7·1 answer
  • A balloon holds 5.00 mol of a mono-atomic gas at a temperature of 5.00oC and at a pressure of 1.20 atm. The gas isothermally abs
    10·1 answer
  • A large spool in an electrician's workshop has 70 m of insulation-coated wire coiled around it. When the electrician connects a
    11·1 answer
  • A source vibrating at constant frequency generates a sinusoidal wave on a string under constant tension. If the power delivered
    9·1 answer
  • A current of I = 3.8 A is passing through a conductor with cross sectional area A = 2.5 x 10^-4 m^2. The charge carriers in the
    13·1 answer
  • Which of the following describes the flow of charges through a wire or a conductor?
    15·1 answer
  • Electricity produces work when the electrons in a conductor
    8·2 answers
  • How Do I get A Picture For My Profile, It keeps saying my pistures won't work
    13·1 answer
  • Which arrow represents the substance’s change of state?
    5·1 answer
  • A plane is flying to Minnesota with a velocity of 277.73 km/h, N. The plane
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!