Answer:
α(0) = 0 rad/s²
α(5) = 15 rad/s²
Explanation:
The angular velocity of the flywheel is given as follows:
w(t) = A + B t²
where, A and B are constants.
Now, for the angular acceleration, we must take derivative of angular velocity with respect to time:
Angular Acceleration = α (t) = dw/dt
α(t) = (d/dt)(A + B t²)
α(t) = 2 B t
where,
B = 1.5
<u>AT t = 0 s</u>
α(0) = 2(1.5)(0)
<u>α(0) = 0 rad/s²</u>
<u></u>
<u>AT t = 5 s</u>
α(5) = 2(1.5)(5)
<u>α(5) = 15 rad/s²</u>
Answer:

Explanation:
c = Speed of wave
= Density of medium
A = Area
= Frequency

Intensity of sound is given by

So,

We get

The ratio is 
This is a power problem which requires the rearranging of a formula. The lamps energy used is 5 N, and the TV’s usage is 116.7 N (rounded from 116.6666repeating). Here my work:
The correct answer is (b.) y/x hertz. That is because the formula to get the frequency is f = v / w. The following values (v=y meters / second; wavelength = x meters) must be substituted to the equation, which leaves you y/x hertz.
Medical movement for disabilities people