Given:
Diprotic weak acid H2A:
Ka1 = 3.2 x 10^-6
Ka2 = 6.1 x 10^-9.
Concentration = 0.0650 m
Balanced chemical equation:
H2A ===> 2H+ + A2-
0.0650 0 0
-x 2x x
------------------------------
0.065 - x 2x x
ka1 = 3.2 x 10^-6 = [2x]^2 * [x] / (0.065 - x)
solve for x and determine the concentration at equilibrium.
Answer:

Explanation:
The formula for tin(IV) sulfide is SnS
Answer:
using a more concentrated potassium hydroxide
Explanation:
<em>The option that would likely increase the rate of reaction would be to use a more concentrated potassium hydroxide.</em>
<u>The concentration of reactants is one of the factors that affect the rate of reaction. The more the concentration of the reactants, the faster the rate of reaction. </u>
Granted that there are enough of the other reactants, increasing the concentration of one of the reactants will lead to an increased rate of reaction.
Hence, using a more concentrated potassium hydroxide which happens to be one of the reactants would likely increase the rate of reaction.
Answer: 581 gmol
0.581 kmol

Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
To calculate the moles, we use the equation:

1. The conversion for mol to gmol
1 mol = 1 gmol
581 mol= 
2. The conversion for mol to kmol
1 mol = 0.001 kmol
581 mol= 
3. The conversion for mol to lbmol
1 mol = 
581 mol= 