For this problem, we use the formula for sensible heat which is written below:
Q= mCpΔT
where Q is the energy
Cp is the specific heat capacity
ΔT is the temperature difference
Q = (55.5 g)(<span>0.214 cal/g</span>·°C)(48.6°C- 23°C)
<em>Q = 304.05 cal</em>
If a solution is saturated, that means it already posses the maximum number of solutes thus have been dissolved in it, and thus the concentration cannot be increased.
Answer : The value of
of the weak acid is, 4.72
Explanation :
First we have to calculate the moles of KOH.


Now we have to calculate the value of
of the weak acid.
The equilibrium chemical reaction is:

Initial moles 0.25 0.03 0
At eqm. (0.25-0.03) 0.03 0.03
= 0.22
Using Henderson Hesselbach equation :
![pH=pK_a+\log \frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
![pH=pK_a+\log \frac{[HK]}{[HA]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BHK%5D%7D%7B%5BHA%5D%7D)
Now put all the given values in this expression, we get:


Therefore, the value of
of the weak acid is, 4.72
The answer for the following question is explained below.
Therefore the total number of orbitals are " 9 ".
Explanation:
Orbital:
An orbital is a mathematical function that describes the wave-like behavior of an electron,electron pair,or the nucleons.
The total number of orbitals present in the 3rd energy level is 9.
Here,
A 3 s subshell has only one orbital.
A 3 p subshell has three orbitals.
A 3 d subshell has five orbitals.
Therefore the total number of orbitals is:
3 s = 1 orbital
3 p = 3 orbitals
3 d = 5 orbitals
total orbitals in 3rd energy level is = 1 + 3 + 5 =9
Therefore the total number of orbitals are " 9 ".
Answer:
• The Na atom is formed when the Na+ ion gains an electron.
• A Na+ ion has 10 electrons and a Na atom has 11 electrons.
• A sodium atom has one more electron shell than a sodium ion.
• A Na+ ion is formed when a Na atom loses an electron