The melting point of potassium = 
Melting point of titanium = 
Titanium has a stronger metallic bonding compared to potassium. Titanium being a transition metal has greater number of valence electrons (4 valence electrons) contributing to the valence electron sea compared to potassium which has only one valence electron. The atomic size of Titanium much lower than that of potassium, so the bonding between Titanium atoms is stronger than that of potassium. Hence, the melting point of Titanium is much higher than that of potassium.
Answer:
The different structures are shown in the attachment.
I and II - structural isomers
I and III - Structural isomers
I and IV - structural isomers
II and III - structural isomers
II and IV - structural isomers
III and IV - stereoisomers
Explanation:
The knowledge of Isomerism is tested here; there are two types of isomerism ; structural and stereoisomerism.
- Structural Isomers have similar molecular and different double bond positioning, these occurs mostly in ALKENE FAMILY.
- Stereo-isomers have the same molecular formular and similar patterns but differ in their spatial arrangement. trans and cis are typical examples of stereo-isomers.
From the question; Relationship between I and II is that they are structural isomers since they have the same molecular formula, but different bond atom arrangement and infact they are the same compound.
- Relationship between I and III is that they are structural isomers with similar molecular formular but differ in the double bond position.
- Relationship between I and IV is that they are structural isomers with similar molecular formula but different double bond arrangement.
- Relationship between II and III is that they are structural isomers with similar molecular formular but different double bond position
- Relationship between II and IV is that they are also structural isomers with the same molecular formular but different double bond position.
- Relationship between III and IV is that they are stereo-isomers with same molecular formula but different spatial arrangement, hence cis and trans.
Answer:c
Explanation:
it’s gained kinetic from the gravitational potential energy at the top
Answer:
if you are talking about miles the answer would be is 0.0001509932(divided by 160934)
if you are talking about mililiters it would be 24.3(multiply times one)
hope this helps
Answer:
the mass of CaO present at equilibrium is, 0.01652g
Explanation:
= 3.8×10⁻²
Now we have to calculate the moles of CO₂
Using ideal gas equation,
PV =nRT
P = pressure of gas = 3.8×10⁻²
T = temperature of gas = 1000 K
V = volume of gas = 0.638 L
n = number of moles of gas = ?
R = gas constant = 0.0821 L.atm/mole.k

Now we have to calculate the mass of CaO
mass = 2.95 * 10 ⁻⁴ × 56
= 0.01652g
Therefore,
the mass of CaO present at equilibrium is, 0.01652g