Explanation:
given,
mass of one planet (m1)=2*10^23 kg
mass of another planet (m2)=5*10^22kg
distance between them(d)=3*10^16m
gravitational constant(G)=6.67*10^-11Nm^2kg^-2
gravitational force between them(F)=?
we know,
F=Gm1m2/d^2
or, F=6.67*10^-11*2*10^23*5*10^22/(3*10^16)^2
or, F=6.67*2*5*10^-11+23+22/3*3*10^32
or, F=66.7*10^34/9*10^32
or, F=7.41*10^34-32
•°• F=7.41*10^2
thus, the gravitational force between them is 7.14*10^2
Answer:
i can not read that sorry
Answer:
A
Explanation:
This is because distance traveled (i.e. displacement) is the integral of the velocity function, and velocity is the first derivative of the displacement function. To put this in perspective, the area bounded by a curve can be found by taking the integral of the equation of the curve, taking values on the x-axis as limits.
<span>Frequency x Wavelength = Speed of light
Now, speed of light = 3 x 10^5 km/s = 3 x 10^8 m/s = 3 x 10^10 cm/s
Frequency = speed/Wavelength
= (3 x 10^10)/(4.257 x 10^-7)
=7 x 10^16 Hz</span>
Answer:
Increasing the tension on a string increases the speed of a wave, which increases the frequency (for a given length). Pressing the finger at different places changes the length of string, which changes the wavelength of standing wave, affecting the frequency.
Explanation: