Answer:
B. 24.2 m/s
Explanation:
Given;
mass of the roller coaster, m = 450 kg
height of the roller coaster, h = 30 m
The maximum potential energy of the roller coaster due to its height is given by;



Therefore, the maximum speed of the roller coaster is 24.2 m/s.
According to the <u>Third Kepler’s Law of Planetary motion</u> “<em>The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.</em>
In other words, this law states a relation between the orbital period
of a body (moon, planet, satellite) orbiting a greater body in space with the size
of its orbit.
This Law is originally expressed as follows:
<h2>

(1)
</h2>
Where;
is the Gravitational Constant and its value is 
is the mass of Jupiter
is the semimajor axis of the orbit Io describes around Jupiter (assuming it is a circular orbit, the semimajor axis is equal to the radius of the orbit)
If we want to find the period, we have to express equation (1) as written below and substitute all the values:
<h2>

(2)
</h2>
Then:
<h2>

(3)
</h2>
Which is the same as:
<h2>

</h2>
Therefore, the answer is:
The orbital period of Io is 42.482 h
Answer:
0.66c
Explanation:
Use length contraction equation:
L = L₀ √(1 − (v²/c²))
where L is the contracted length,
L₀ is the length at 0 velocity,
v is the velocity,
and c is the speed of light.
900 = 1200 √(1 − (v²/c²))
3/4 = √(1 − (v²/c²))
9/16 = 1 − (v²/c²)
v²/c² = 7/16
v = ¼√7 c
v ≈ 0.66 c
Answer :
.
Explanation:
It is given that,
Electric field strength, 
We know that,
Charge of electron, 
Mass of electron, 
From the definition of electric field,
...............(1)
According to Newton's second law, F = ma..........(2)
From equation (1) and (2)




or

So, the horizontal component of acceleration of an electron is
.
Hence, it is the required solution.