Answer: The molality of solution is 0.66 mole/kg
Explanation:
Molality of a solution is defined as the number of moles of solute dissolved per kg of the solvent.

where,
n = moles of solute
= weight of solvent in g
moles of
= 
Now put all the given values in the formula of molality, we get

Therefore, the molality of solution is 0.66 mole/kg
Answer:
Its phosphorus (P)
Explanation:
In writing the electron configuration for Phosphorus the first two electrons will go in the 1s orbital. Since 1s can only hold two electrons the next 2 electrons for Phosphorous go in the 2s orbital. The next six electrons will go in the 2p orbital. The p orbital can hold up to six electrons. We'll put six in the 2p orbital and then put the next two electrons in the 3s. Since the 3s if now full we'll move to the 3p where we'll place the remaining three electrons. Therefore the Phosphorus electron configuration will be 1s22s22p63s23p3.
Answer:
C
Explanation:
A diatomic element in that list is Bromine
Answer: 460.624
Explanation:
1. Multiply the numbers
(24.5260 x 2.56) + 397.84
= (62.784) + 397.84
2. Add the numbers
(62.784) + 397.84
= 460.624
Answer:-
2747.7 Cal mol -1
Explanation:-
Molar heat of Fusion is defined as the amount of heat necessary to melt (or freeze) 1 mole of a substance at its melting point.
Atomic mass of Iron = 55.845 g mol-1
Mass of Iron = 200 g
Number of moles of Iron = 200 g / (55.845 g mol-)
= 3.581 moles
Heat released = 9840 Cal
Molar heat of Fusion = Heat released / Number of moles
= 9840 Cal / 3.581 moles
= 2747.7 Cal mol -1