Answer: Water
Explanation: During photosynthesis, plants take in carbon dioxide (CO2) and water (H2O) from the air and soil
Answer:
N2 + 3H2 ———> 2NH3
As we know 1000 grams ammonia is 58.82 moles so according to unitary method,
2 mole NH3 formed by 1 mole N2 hence 58.82 NH3 will be given by 29.41 moles N2.
No. Of moles = given mass/molar mass
Implies that
Mass of nitrogen required = 29.41*28 = 823.48 grams.
Explanation:
Explanation:
Sodium has 1 electron in its outermost shell, and chlorine has 7 electrons. It is easiest for sodium to lose its electron and form a +1 ion, and for chlorine to gain an electron, forming a -1 ion.
<em>Now ionic bonds areIons are formed by atoms that have non-full outermost electron shells in order to become more like the noble gases in Group 8 of the Periodic Table,</em>
<em>Now ionic bonds areIons are formed by atoms that have non-full outermost electron shells in order to become more like the noble gases in Group 8 of the Periodic Table,Some atoms add electrons to get a full shell, thus becoming a negative ion. Other atoms subtract electrons from their outermost shell, leaving a full </em><em>shell and an overall positive charge..</em>
<em>shell and an overall positive charge..therefore it is an</em> ionic bond
Answer:
No
Explanation:
The mass fraction is defined as:

where:
- wi: mass fraction of the substance i
- mi: mass of the substance i
- mt: total mass of the system
<u><em>The mass fraction of two substances (A and B), will be the same, ONLY if the mass of the substance A (mA) is the same as the mass of the substance B (mB).</em></u>
An equimolar mixutre of O2 and N2 has the same amount of moles of oxygen and nitrogen, just to give an example let's say that the system has 1 mole of O2 and 1 mole of N2. Then using the molecuar weigth of each of them we can calculate the mass:
mA= 1 mole of O2 * 16 g/1mol = 16 g
mB=1 mole of N2 *28 g/1mol=28 g
As mA≠mB then the mass fractions are not equal, so the answear is NO.
Answer : The time passed in years is 
Explanation :
Half-life of carbon-14 = 5730 years
First we have to calculate the rate constant, we use the formula :



Now we have to calculate the time passed.
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = 
t = time passed by the sample = ?
a = initial amount of the reactant disintegrate = 15.3
a - x = amount left after decay process = 14.8
Now put all the given values in above equation, we get


Therefore, the time passed in years is 