Since the rocket’s acceleration is 3.00 m/s^3 * t, its acceleration is increasing at the rate of 3 m/s^3 each second. The equation for its velocity at a specific time is the integral of the acceleration equation.
<span>vf = vi + 1.5 * t^2, vi = 0 </span>
<span>vf = 1.5 * 10^2 = 150 m/s </span>
This is the rocket’s velocity at 10 seconds. The equation for its height at specific time is the integral velocity equation
<span>yf = yi + 0.5 * t^3, yi = 0 </span>
<span>yf = 0.5 * 10^3 = 500 meters </span>
<span>This is the rocket’s height at 10 seconds. </span>
<span>Part B </span>
<span>What is the speed of the rocket when it is 345 m above the surface of the earth? </span>
<span>Express your answer with the appropriate units. </span>
<span>Use the equation above to determine the time. </span>
<span>345 = 0.5 * t^3 </span>
<span>t^3 = 690 </span>
<span>t = 690^⅓ </span>
<span>This is approximately 8.837 seconds. Use the following equation to determine the velocity at this time. </span>
<span>v = 1.5 * t^2 = 1.5 * (690^⅓)^2 </span>
<span>This is approximately 117 m/s. </span>
<span>The graph of height versus time is the graph of a cubic function. The graph of velocity is a parabola. The graph of acceleration versus time is line. The slope of the line is the coefficient of t. This is a very different type of problem. For the acceleration to increase, the force must be increasing. To see what this feels like slowly push the accelerator pedal of a car to the floor. Just don’t do this so long that your car is speeding!!</span>
Answer:12.8 ft/s
Explanation:
Given
Speed of hoop 
height of top 
Initial energy at bottom is

Where m=mass of hoop
I=moment of inertia of hoop
=angular velocity
for pure rolling 



Energy required to reach at top


Thus 512.2 m is converted energy is spent to raise the potential energy of hoop and remaining is in the form of kinetic and rotational energy

Therefore



Answer:
Explanation:
Given:
Initial θ = 0 rad (from rest)
Final θ = 14.3 rad
Time, t = 5 s
B.
Angular velocity, w = dθ / dt
= (14.3 - 0)/5
= 2.86 rad/s
A.
Acceleration, ao = dw/dt
Initial angular velocity, wi = 0 rad/s (from rest)
Final angular velocity, wf = 2.86 rad/s
a = (2.86 - 0)/5
= 0.572 rad/s^2
Density = mass/volume, volume = mass/density.
Since the mass of the small cube equals 20 and the mass of the large cube is double it would be 40.
Now plug in volume = 40 g/(7.87 g/cm^3).
Thus giving you a volume 5.08 cm^3
<h3>✽ - - - - - - - - - - - - - - - ~<u>Hello There</u>!~ - - - - - - - - - - - - - - - ✽</h3>
➷ Earth's gravity is approximately 9.81
weight = mass x gravity
weight = 4.6 x 9.81
weight = 45.126
Answer is B. 45N
➶ Hope This Helps You!
➶ Good Luck (:
➶ Have A Great Day ^-^
↬ ʜᴀɴɴᴀʜ ♡