Answer:

Explanation:
Time to mow 1 lawn by Wilma is 80 minutes
so work done in 1 minute by Wilma is given as
Similarly Rocky mow same lawn in 120 minute
so work done in 1 minute by Rocky is given as

now we know that they both worked by "t" time
so total work performed by them

they both mow 2 lawns then it is given as


Answer:
f= 4,186 10² Hz
Explanation:
El sistema descrito es un pendulo de torsión que oscila con con velocidad angular, que esta dada por
w = √ k/I
donde ka es constante de torsion de hilo e I es el momento de inercia del disco
El momento de inercia de indican que giran un eje que pasa por enronqueces
I= ½ M R2
reduzcamos las cantidades al sistema SI
R= 1,4 cm = 0,014 m
M= 430 g = 0,430 kg
substituimos
w= √ (2 k/M R2)
calculemos
w = RA ( 2 370 / (0,430 0,014 2)
w = 2,963 103 rad/s
la velocidad angular esta relacionada con la frecuencia por
w =2pi f
f= w/2π
f= 2,963 10³/ (2π)
f= 4,186 10² Hz
Mass and distance
force /pull of gravity decreases with the increase in separation between the two bodies
the amount of gravity an object possesses is proportional to the mass of that object.
Answer:
"Why"
Explanation: A scientific law is a description of how the natural world behaves under certain circumstances.
Answer:
The Earth’s lithosphere, which includes the crust and upper mantle, is made up of a series of pieces, or tectonic plates, that move slowly over time.
A divergent boundary occurs when two tectonic plates move away from each other. Along these boundaries, earthquakes are common and magma (molten rock) rises from the Earth’s mantle to the surface, solidifying to create new oceanic crust. The Mid-Atlantic Ridge and Pacific Ring of Fire are two examples of divergent plate boundaries.
When two plates come together, it is known as a convergent boundary. The impact of the colliding plates can cause the edges of one or both plates to buckle up into a mountain ranges or one of the plates may bend down into a deep seafloor trench. A chain of volcanoes often forms parallel to convergent plate boundaries and powerful earthquakes are common along these boundaries.
At convergent plate boundaries, oceanic crust is often forced down into the mantle where it begins to melt. Magma rises into and through the other plate, solidifying into granite, the rock that makes up the continents. Thus, at convergent boundaries, continental crust is created and oceanic crust is destroyed.
Two plates sliding past each other forms a transform plate boundary. One of the most famous transform plate boundaries occurs at the San Andreas fault zone, which extends underwater. Natural or human-made structures that cross a transform boundary are offset—split into pieces and carried in opposite directions. Rocks that line the boundary are pulverized as the plates grind along, creating a linear fault valley or undersea canyon. Earthquakes are common along these faults. In contrast to convergent and divergent boundaries, crust is cracked and broken at transform margins, but is not created or destroyed.