Answer:
1.33 L.
Explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and T are constant, and have different values of P and V:
<em>(P₁V₁) = (P₂V₂)</em>
<em></em>
Knowing that:
V₁ = 4.0 L, P₁ = 2.0 atm,
V₂ = ??? L, P₂ = 6.0 atm.
- Applying in the above equation
(P ₁V₁) = (P₂V₂)
<em>∴ V₂ = P ₁V₁/P₂</em> = (2.0 atm)(4.0 L)/(6.0 atm) =<em> 1.33 L.</em>
the environment is Healthy
The answer is atoms good luck
Answer:
1.Metals
These are very hard except sodium
These are malleable and ductile pieces
These are shiny
Electropositive in nature
Non-metals
These are soft except diamond
These are brittle and can break down into pieces
These are non-lustrous except iodine
Electronegative in nature
2. The electrochemical series helps to pick out substances that are good oxidizing agents and those which are good reducing agents.In an electrochemical series the species which are placed above hydrogen are more difficult to be reduced and their standard reduction potential values are negative.
3. Arrhenius theory, theory, introduced in 1887 by the Swedish scientist Svante Arrhenius, that acids are substances that dissociate in water to yield electrically charged atoms or molecules, called ions, one of which is a hydrogen ion (H+), and that bases ionize in water to yield hydroxide ions (OH−).
4. The common application of indicators is the detection of end points of titrations. The colour of an indicator alters when the acidity or the oxidizing strength of the solution, or the concentration of a certain chemical species, reaches a critical range of values.