Upwelling currents in the molten material beneath the crust.
The rocks that make up the crust are light, compared with the metal-rich material beneath. The crust floats on top like an iceberg. Slow-moving currents underneath propel the continents around the surface
Answer:
a = 4.9(1 - sinθ - 0.4cosθ)
Explanation:
Really not possible without a complete setup.
I will ASSUME that this an Atwood machine with two masses (m) connected by an ideal rope passing over an ideal pulley. One mass hangs freely and the other is on a slope of angle θ to the horizontal with coefficient of friction μ. Gravity is g
F = ma
mg - mgsinθ - μmgcosθ = (m + m)a
mg(1 - sinθ - μcosθ) = 2ma
½g(1 - sinθ - μcosθ) = a
maximum acceleration is about 2.94 m/s² when θ = 0
acceleration will be zero when θ is greater than about 46.4°
The best and most correct answer among the choices provided by the question is decreases <span>.
</span>The potential energy of the object <span>decreases.</span>
Hope my answer would be a great help for you.
If you have more questions feel free to ask here at Brainly.
Answer:
(1) By increasing the number of loops of wire around the iron core
(2) increasing the current or voltage.
Answer:
k_max = 31.82 w/mk
k_min = 17.70 w/mk
Explanation:
a) the maximum thermal conductivity is given as

where k_m is thermal conductvitiy of metal
k_p is thermal conductvitiy of carbide
v_m = proportion of metal in the cement = 0.17
v_p = proportion of carbide in the cement = 0.83
= 66*0.17 + 28*0.83
k_max = 31.82 w/mk
b) the minimum thermal conductivity is given as

= \frac{28+66}{28*0.17 +66*0.83}
k_min = 17.70 w/mk