Answer:
Flow Rate = 80 m^3 /hours (Rounded to the nearest whole number)
Explanation:
Given
- Hf = head loss
- f = friction factor
- L = Length of the pipe = 360 m
- V = Flow velocity, m/s
- D = Pipe diameter = 0.12 m
- g = Gravitational acceleration, m/s^2
- Re = Reynolds's Number
- rho = Density =998 kg/m^3
- μ = Viscosity = 0.001 kg/m-s
- Z = Elevation Difference = 60 m
Calculations
Moody friction loss in the pipe = Hf = (f*L*V^2)/(2*D*g)
The energy equation for this system will be,
Hp = Z + Hf
The other three equations to solve the above equations are:
Re = (rho*V*D)/ μ
Flow Rate, Q = V*(pi/4)*D^2
Power = 15000 W = rho*g*Q*Hp
1/f^0.5 = 2*log ((Re*f^0.5)/2.51)
We can iterate the 5 equations to find f and solve them to find the values of:
Re = 235000
f = 0.015
V = 1.97 m/s
And use them to find the flow rate,
Q = V*(pi/4)*D^2
Q = (1.97)*(pi/4)*(0.12)^2 = 0.022 m^3/s = 80 m^3 /hours
When a gas is heated to become a plasma, the atoms (or the molecules) of the gas become ionised. In the ionisation, the atoms loose electrons from the exterior energy levels and thus heating to achieve a plasma will create free electrons and ionized atoms (or ionized molecules).
A plasma can not contain neutrons, because neutrons together with protons make the nuclei of the atoms. To free the neutrons from the atomn nuclei there would be necessary HUGE temperatures.
Also a plasma does not contain neutral elements (atoms) or (neutral) molecules, but Ionized atoms and/or molecules and free electrons.
Thus the good answer is d)
Answer: a) 0.11 Amp b) 0.000429 Joules c) 0.000514 watt
Explanation:
a)current
I=V/r I=6.0/550 =1.1*10^-2 A
b) energy
E= 1.1*10^-2 x (6.0) x 0.00065s(<-- remember to convert ms to seconds) = 0.000429J
C) Average power
P = (0.000429 x 72) / 60
P = 0.000514 W
Answer:
Water is absorbing heat.
Explanation:
Water is able to absorb heat
-<u> without increasing much in temperature</u> - better than many substances.
This is because for water to increase in temperature, water molecules must be made to move faster within the water; this requires breaking hydrogen bonds, and the breaking of hydrogen bonds absorbs heat.