Peak voltage is 2
period is 40ms
frequency = 1/period = 25Hz
Answer:
The particle’s velocity is -16.9 m/s.
Explanation:
Given that,
Initial velocity of particle in negative x direction= 4.91 m/s
Time = 12.9 s
Final velocity of particle in positive x direction= 7.12 m/s
Before 12.4 sec,
Velocity of particle in negative x direction= 5.32 m/s
We need to calculate the acceleration
Using equation of motion


Where, v = final velocity
u = initial velocity
t = time
Put the value into the equation


We need to calculate the initial speed of the particle
Using equation of motion again


Put the value into the formula


Hence, The particle’s velocity is -16.9 m/s.
The three ways a person can manipulate light
would be the following:,
filter, and the time the photograph is taken
<span>1.
</span>Angle
- <span>The </span>camera angle<span> <span>marks
the specific location at which the movie </span></span>camera<span> <span>or
video </span></span>camera<span> is
placed to take a shot.</span>
<span>2.
</span>Filter - Camera<span> <span>lens </span></span>filters<span> <span>still have many uses in digital photography,
and should be an important part of any photographer's </span></span>camera<span> bag.</span>
<span>3.
</span>Time
the photograph is taken - The golden hour, sometimes called the "magic
hour", is roughly the first hour of light after sunrise, and the last hour
of light before sunset, although the exact duration varies between seasons.
During these times the sun is low in the sky, producing a soft, diffused light
which is much more flattering than the harsh midday sun that so many of us are
used to shooting in.
I am hoping that these answers
have satisfied your queries and it will be able to help you in your endeavors, and
if you would like, feel free to ask another question.
Answer:
a) t=24s
b) number of oscillations= 11
Explanation:
In case of a damped simple harmonic oscillator the equation of motion is
m(d²x/dt²)+b(dx/dt)+kx=0
Therefore on solving the above differential equation we get,
x(t)=A₀
where A(t)=A₀
A₀ is the amplitude at t=0 and
is the angular frequency of damped SHM, which is given by,

Now coming to the problem,
Given: m=1.2 kg
k=9.8 N/m
b=210 g/s= 0.21 kg/s
A₀=13 cm
a) A(t)=A₀/8
⇒A₀
=A₀/8
⇒
applying logarithm on both sides
⇒
⇒
substituting the values

b) 

, where
is time period of damped SHM
⇒
let
be number of oscillations made
then, 
⇒
Answer:
A.) 42.7 m/s
B.) 0.33 m/s^2
C.) 90 kg
Explanation:
A.) If Justin races his Chevy S-10 down highway 37 north for 2,560 meters in 60 seconds, what is his velocity?
Velocity = displacement/time
Velocity = 2560/60
Velocity = 42.67 m/s
B.) The Chevy S-10 started rounding at 10 meters per hour. What is the acceleration at 30 seconds on the highway?
Acceleration = velocity/time
Acceleration = 10/30
Acceleration = 0.33 m/s^2
C.) The S-10 has a force of 30 N. What is the mass of the car?
Force = mass × acceleration
30 = mass × 0.33
Mass = 30/ 0.33
Mass = 90 kg