1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
viktelen [127]
3 years ago
15

Atomic physicists usually ignore the effect of gravity within an atom. To see why, we may calculate and compare the magnitude of

the ratio of the electrical force and gravitational force between an electron and a proton separated by a distance of 1 m.
1. What is the magnitude of the electrical force?
The Coulomb constant is 8.98755 x 10^9 N*m^2/C^2 , the gravitational constant is 6.67259 x 10^11 m^3 /kg*s^2 , the mass of a proton is 1.67262 x 10^-27 kg, the mass of an electron is 9.10939 x 10^−31 kg, and the elemental charge is 1.602 x 10^-19 C. Answer in units of N.
Physics
1 answer:
puteri [66]3 years ago
7 0

Explanation:

The electrical force between charges is given by :

F_e=\dfrac{kq_eq_p}{r^2}

q_e\ and\ q_p are charge on electron and proton respectively.

F_e=\dfrac{9\times 10^9\times (1.6\times 10^{-19})^2}{1^2}\\\\F_e=2.3\times 10^{-28}\ N

The Gravitational force between masses is given by :

F_G=\dfrac{Gm_em_p}{r^2}

m_e\ and\ m_p are masses of electron and proton respectively.

F_G=\dfrac{6.67\times 10^{-11}\times 9.1\times 10^{-31}\times 1.67\times 10^{-27}}{1^2}\\\\F_G=1.01\times 10^{-67}

Ratio of electrical to the gravitational force is :

\dfrac{F_e}{F_G}=\dfrac{2.3\times 10^{-28}\ N}{1.01\times 10^{-67}\ N}\\\\\dfrac{F_e}{F_G}=2.27\times 10^{39}

Hence, this is the required solution.

You might be interested in
A 2 kg, frictionless block is attached to a horizontal, ideal spring with spring constant 300 N/m. At t = 0 the spring is neithe
schepotkina [342]

Answer:

Explanation:

Given that,

Mass of block

M = 2kg

Spring constant k = 300N/m

Velocity v = 12m/s

At t = 0, the spring is neither stretched nor compressed. Then, it amplitude is zero at t=0

xo = 0

It velocity is 12m/s at t=0

Then, it initial velocity is

Vo = 12m/s

Then, amplitude is given as

A = √[xo + (Vo²/ω²)]

Where

xo is the initial amplitude =0

Vo is the initial velocity =12m/s

ω is the angular frequency and it can be determine using

ω = √(k/m)

Where

k is spring constant = 300N/m

m is the mass of object = 2kg

Then,

ω = √300/2 = √150

ω = 12.25 rad/s²

Then,

A = √[xo + (Vo²/ω²)]

A = √[0 + (12²/12.5²)]

A = √[0 + 0.96]

A = √0.96

A = 0.98m

4 0
3 years ago
How does a compound differ from a mixture?
Mashcka [7]
A compound is the substances that are formed by combining two are more chemical elements. A mixture is a substance created from two or more matter that can be separate with the help of physical methods. ... Mainly pure water is part of the compound. Mixtures fall under impure water.

Hope this helps!

Have a great day!
4 0
3 years ago
Read 2 more answers
Three crates with various contents are pulled by a force Fpull=3615 N across a horizontal, frictionless roller‑conveyor system.
SIZIF [17.4K]

The question is incomplete. Here is the complete question.

Three crtaes with various contents are pulled by a force Fpull=3615N across a horizontal, frictionless roller-conveyor system.The group pf boxes accelerates at 1.516m/s2 to the right. Between each adjacent pair of boxes is a force meter that measures the magnitude of the tension in the connecting rope. Between the box of mass m1 and the box of mass m2, the force meter reads F12=1387N. Between the box of mass m2 and box of mass m3, the force meter reads F23=2304N. Assume that the ropes and force meters are massless.

(a) What is the total mass of the three boxes?

(b) What is the mass of each box?

Answer: (a) Total mass = 2384.5kg;

               (b) m1 = 915kg;

                   m2 = 605kg;

                   m3 = 864.5kg;

Explanation: The image of the boxes is described in the picture below.

(a) The system is moving at a constant acceleration and with a force Fpull. Using Newton's 2nd Law:

F_{pull}=m_{T}.a

m_{T}=\frac{F_{pull}}{a}

m_{T}=\frac{3615}{1.516}

m_{T}=2384.5

Total mass of the system of boxes is 2384.5kg.

(b) For each mass, analyse each box and make them each a free-body diagram.

<u>For </u>m_{1}<u>:</u>

The only force acting On the m_{1} box is force of tension between 1 and 2 and as all the system is moving at a same acceleration.

m_{1} = \frac{F_{12}}{a}

m_{1} = \frac{1387}{1.516}

m_{1} = 915kg

<u>For </u>m_{2}<u>:</u>

There are two forces acting on m_{2}: tension caused by box 1 and tension caused by box 3. Positive referential is to the right (because it's the movement's direction), so force caused by 1 is opposing force caused by 3:

m_{2} = \frac{F_{23}-F_{12}}{a}

m_{2} = \frac{2304-1387}{1.516}

m_{2} = 605kg

<u>For </u>m_{3}<u>:</u>

m_{3} = m_{T} - (m_{1}+m_{2})

m_{3} = 2384.5-1520.0

m_{3} = 864.5kg

8 0
3 years ago
On the surface of the earth the weight of an object is 200 lb. Determine the height of the
siniylev [52]

Answer:

The height of the  object is 5007.4 miles.

Explanation:

Given that,

Weight of object = 200 lb

We need to calculate the value of Gmm_{e}

Using formula of gravitational force

F=\dfrac{Gmm_{e}}{r^2}

Put the value into the formula

200=\dfrac{Gmm_{e}}{(3958.756)^2}

200\times(3958.756)^2=Gmm_{e}

Gmm_{e}=3.134\times10^{9}

We need to calculate the height of the  object

Using formula of gravitational force

F=\dfrac{Gmm_{e}}{r^2}

Put the value into the formula

125=\dfrac{200\times(3958.756)^2}{r^2}

r^2=\dfrac{200\times(3958.756)^2}{125}

r^2=25074798.5

r=\sqrt{25074798.5}

r=5007.4\ miles

Hence. The height of the  object is 5007.4 miles.

7 0
3 years ago
Select all the statements regarding electric field line drawings that are correct.
Sophie [7]

Answer:

All statement are correct.

Explanation:

1. Electric field lines are the same thing as electric field vectors, electric field are mathematically vectors quantity. These vectors point in the direction in which a positive test charge would move.

2.  Electric field line drawings allow you to determine the approximate direction of the electric field at a point in space. Yes it is correct tangent drawn at any point on these lines gives the direction of electric filed at that point.

3. The number of electric field lines that start or end at a charged particle is proportional to the magnitude of charge on the particle, is a correct statement.

4.The electric field is strongest where the electric field lines are close together, again a correct statement as relative closeness of field lines indicate a stronger strength of electric field.

Hence we can say that all the statement are correct.

7 0
3 years ago
Other questions:
  • 60 kilometers in 4 hours, what is the average speed?​
    9·1 answer
  • A man stands on a scale in an elevator as shown here. the force of his weight when the elevator is still is fg downward. suppose
    7·1 answer
  • A box of mass 14 kg sits on an inclined surface with an angle of 52degrees. What is the component of the weight of the box along
    5·2 answers
  • A drone traveling horizontally at 110 m/s over flat ground at an elevation of 3000 meters must drop an emergency package on a ta
    6·1 answer
  • A very long, uniformly charged cylinder has radius R and linear charge density λ. Find the cylinder's electric field strength ou
    6·2 answers
  • Which of the following is an accurate statement about vectors?
    5·2 answers
  • Although wave power does not produce pollution, some people may not want to invest in it because it is _____. 100 percent renewa
    8·2 answers
  • Which term below best matches this definition - a period in European history when many educated people stressed the importance o
    9·1 answer
  • What force must be applied to the end of a rod along the x-axis of length 2.25 m in order to produce a torque on the rod about t
    8·1 answer
  • Explauin this plazz if u explain this to me i wil give brainlist
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!