Answer:
D
Explanation:
The friction force is the weight force times the coefficient of friction. So diving by the coefficient gives you the weight force which is equivalent to the normal force.
Answer:
1- The acceleration of the object is larger in magnitude the smaller the radius of the circle.
Explanation:
The acceleration of an object in a circular path is

As can be seen from the equation, if the radius of the circle is decreases, the magnitude of the acceleration increases.
As for the direction of the acceleration, it is always towards the center, and it is always perpendicular to the direction of the velocity.
Point A has the largest magnitude of acceleration as compared to other points on the position verses time graph.
On the graph, A is the point where magnitude of the acceleration of the particle is greatest as compared to other positions on the graph because the height of point A is the largest as compared to other points of the graph.
The graph shows at which point acceleration of an object is higher and lower so we can conclude that point A has the largest magnitude of acceleration as compared to other points on the position verses time graph.
Learn more about acceleration here: brainly.com/question/933224
Learn more: brainly.com/question/25887663
Water and baking soda can be used, too.
Answer: v = 2.24 m/s
Explanation: The <u>Law</u> <u>of</u> <u>Conservation</u> <u>of</u> <u>Energy</u> states that total energy is constant in any process and, it cannot be created nor destroyed, only transformed.
So, in the toy launcher, the energy of the compressed spring, called <u>Elastic</u> <u>Potential</u> <u>Energy (PE)</u>, transforms into the movement of the plastic sphere, called <u>Kinetic</u> <u>Energy (KE)</u>. Since total energy must be constant:

where the terms with subscript i are related to the initial of the process and the terms with subscript f relates to the final process.
The equation is calculated as:






v = 2.24
The maximum speed the plastic sphere will be launched is 2.24 m/s.