Answer:
Chemical energy to electrical energy to mechanical and thermal energy
Explanation:
In the rotating fan, the chemical energy stored in the battery is used to generate electrical energy.
The electrolytes within the battery undergoes chemical reactions that produces electric current.
- The current is being used to drive the motor of the fan to produce a mechanical energy as it rotates.
- In like manner, heat energy is also produced.
- So, energy is simply being transformed from one form to the other in this system.
The plant grows in the solid part of earth, the lithosphere. When water evaporates from the plant, it enters the hydrosphere, the portion if earth on kand and in the air that contains water. The atmosphere is part of the hydrosphere.
Answer: 750Kg
Explanation:
Recall that force is the product of the mass M, of an object moving at a uniform acceleration.
i.e Force = Mass x Acceleration
In this case, Mass = ?
Force = 3.00 x 10^3 N = (3.00 x 1000N)
= 3000N
Uniform acceleration = 4.00m/s^2
Force = Mass x Acceleration
3000N = Mass x 4.00m/s^2
Mass = (3000N/4.00m/s^2)
Mass = 750Kg (The SI unit of mass is kilograms)
Thus, the mass of the car is 750Kg
A) 0.189 N
The weight of the person on the asteroid is equal to the gravitational force exerted by the asteroid on the person, at a location on the surface of the asteroid:

where
G is the gravitational constant
8.7×10^13 kg is the mass of the asteroid
m = 130 kg is the mass of the man
R = 2.0 km = 2000 m is the radius of the asteroid
Substituting into the equation, we find

B) 2.41 m/s
In order to orbit just above the surface of the asteroid (r=R), the centripetal force that keeps the astronaut in orbit must be equal to the gravitational force acting on the astronaut:

where
v is the speed of the astronaut
Solving the formula for v, we find the minimum speed at which the astronaut should launch himself and then orbit the asteroid just above the surface:

Running on sand requires 1.6 times more energy spent than running on hard surface, so the force applied by our foot on sand is less.