Answer:
I don't know if you can directly prove it with evidence if you haven't observed it but you can maybe take an educated guess by the aftermath of it?
For example, you see a burnt log. At this time, people don't know what fire is. After we study the log, we could see that it takes extreme temperature in order to burn the log and that would help people see that there is a force like fire that can cause this. In a way, finding out that extreme temperatures burns stuff is another step closer to the discovery and proof of fire
I hope that makes sense
Answer: There are
atoms present in 0.500 mol of
.
Explanation:
According to the mole concept, there are
atoms present in 1 mole of a substance.
In a molecule of
there is only one carbon atom present. Therefore, number of carbon atoms present in 0.500 mol of
are as follows.

Thus, we can conclude that there are
atoms present in 0.500 mol of
.
Answer:
See explanation below
Explanation:
In order to calculate this, we need to use the following expression to get the concentration of the base:
MaVa = MbVb (1)
We already know the volume of NaOH used which is 13.4473 mL. We do not have the concentration of KHP, but we can use the moles. We have the mass of KHP which is 0.5053 g and the molecular formula. Let's calculate the molecular mass of KHP:
Atomic weights of the elements to be used:
K = 39.0983 g/mol; H = 1.0078 g/mol; C = 12.0107 g/mol; O = 15.999 g/mol
MM KHP = (1.0078*5) + (39.0983) + (8*12.0107) + (4*15.999) = 204.2189 g/mol
Now, let's calculate the mole of KHP:
moles = 0.5053 / 204.2189 = 0.00247 moles
With the moles, we also know that:
n = M*V (2)
Replacing in (1):
n = MbVb
Now, solving for Mb:
Mb = n/Vb (3)
Finally, replacing the data:
Mb = 0.00247 / (13.4473/1000)
Mb = 0.184 M
This would be the concentration of NaOH