Complete Question
The complete question is shown on the first uploaded image
Answer:
The equilibrium constant is ![K_c= 2.8*10^{-4}](https://tex.z-dn.net/?f=K_c%3D%202.8%2A10%5E%7B-4%7D)
Explanation:
From the question we are told that
The chemical reaction equation is
![Fe_{2} O_{3}_{(s)} + 3H_{2}_{(g)} -----> 2Fe_{(s)} + 3H_{2} O_{(g)}](https://tex.z-dn.net/?f=Fe_%7B2%7D%20O_%7B3%7D_%7B%28s%29%7D%20%2B%203H_%7B2%7D_%7B%28g%29%7D%20%20-----%3E%202Fe_%7B%28s%29%7D%20%2B%203H_%7B2%7D%20O_%7B%28g%29%7D)
The voume of the misture is
The molar mass of
is a constant with value of ![M_{Fe_{2} O_{3}_{(s)} } = 160g/mol](https://tex.z-dn.net/?f=M_%7BFe_%7B2%7D%20O_%7B3%7D_%7B%28s%29%7D%20%7D%20%3D%20160g%2Fmol)
The molar mass of
is a constant with value of ![H_2 = 2g/mol](https://tex.z-dn.net/?f=H_2%20%3D%202g%2Fmol)
The molar mass of
is a constant with value of ![H_2O = 18g/mol](https://tex.z-dn.net/?f=H_2O%20%3D%2018g%2Fmol)
Generally the number of moles is mathematically given as
![No \ of \ moles \ = \frac{mass}{molar\ mass}](https://tex.z-dn.net/?f=No%20%5C%20of%20%5C%20moles%20%5C%20%3D%20%5Cfrac%7Bmass%7D%7Bmolar%5C%20%20mass%7D)
For ![Fe_{2} O_{3}_{(s)}](https://tex.z-dn.net/?f=Fe_%7B2%7D%20O_%7B3%7D_%7B%28s%29%7D)
![No \ of\ moles = \frac{3.54}{160}](https://tex.z-dn.net/?f=No%20%5C%20of%5C%20moles%20%3D%20%5Cfrac%7B3.54%7D%7B160%7D)
![= 0.022125 \ mols](https://tex.z-dn.net/?f=%3D%200.022125%20%5C%20mols)
For ![H_{2}](https://tex.z-dn.net/?f=H_%7B2%7D)
![No \ of\ moles = \frac{3.63}{2}](https://tex.z-dn.net/?f=No%20%5C%20of%5C%20moles%20%3D%20%5Cfrac%7B3.63%7D%7B2%7D)
![= 1.815 \ mols](https://tex.z-dn.net/?f=%3D%201.815%20%5C%20mols)
For ![H_{2}O](https://tex.z-dn.net/?f=H_%7B2%7DO)
![No \ of\ moles = \frac{2.13}{18}](https://tex.z-dn.net/?f=No%20%5C%20of%5C%20moles%20%3D%20%5Cfrac%7B2.13%7D%7B18%7D)
![= 0.12 \ mols](https://tex.z-dn.net/?f=%3D%200.12%20%5C%20mols)
Generally the concentration of a compound is mathematicallyrepresented as
![Concentration = \frac{No \ of \ moles }{Volume }](https://tex.z-dn.net/?f=Concentration%20%20%3D%20%5Cfrac%7BNo%20%5C%20of%20%5C%20moles%20%7D%7BVolume%20%7D)
For ![Fe_{2} O_{3}_{(s)}](https://tex.z-dn.net/?f=Fe_%7B2%7D%20O_%7B3%7D_%7B%28s%29%7D)
![Concentration[Fe_2 O_3] = \frac{0.222125}{5.4}](https://tex.z-dn.net/?f=Concentration%5BFe_2%20O_3%5D%20%3D%20%5Cfrac%7B0.222125%7D%7B5.4%7D)
For ![H_{2}](https://tex.z-dn.net/?f=H_%7B2%7D)
![Concentration[H_2] = \frac{1.815}{5.4}](https://tex.z-dn.net/?f=Concentration%5BH_2%5D%20%3D%20%5Cfrac%7B1.815%7D%7B5.4%7D)
![= 0.336M](https://tex.z-dn.net/?f=%3D%200.336M)
For ![H_{2}O](https://tex.z-dn.net/?f=H_%7B2%7DO)
![Concentration [H_2O] = \frac{0.12}{5.4}](https://tex.z-dn.net/?f=Concentration%20%5BH_2O%5D%20%3D%20%5Cfrac%7B0.12%7D%7B5.4%7D)
![= 0.022M](https://tex.z-dn.net/?f=%3D%200.022M)
The equilibrium constant is mathematically represented as
![K_c = \frac{[concentration \ of \ product]}{[concentration \ of \ reactant ]}](https://tex.z-dn.net/?f=K_c%20%3D%20%5Cfrac%7B%5Bconcentration%20%5C%20of%20%5C%20product%5D%7D%7B%5Bconcentration%20%5C%20of%20%5C%20reactant%20%5D%7D)
Considering ![H_2O \ for \ product](https://tex.z-dn.net/?f=H_2O%20%20%5C%20for%20%5C%20product)
And ![H_2 \ for \ reactant](https://tex.z-dn.net/?f=H_2%20%20%5C%20for%20%20%5C%20reactant)
At equilibrium the
![K_c = \frac{0.022}{0.336}](https://tex.z-dn.net/?f=K_c%20%3D%20%5Cfrac%7B0.022%7D%7B0.336%7D)
![K_c= 2.8*10^{-4}](https://tex.z-dn.net/?f=K_c%3D%202.8%2A10%5E%7B-4%7D)