Answer:
(D) V + 1.5 volts
Explanation:
Eq. for stopping potential:
eV₀ = hf - ∅ ---- eq (1)
where
V₀ = stopping potential
h = planks's constant
v = frequency of light
f = c/λ
∅ = work function
stopping potential for metal 1 =V₁= V
stopping potential for metal 1 = V₂
work function for metal 1 = 3.6 eVolts
work function for metal 2 = 2.1 eVolts
substituting values for metal 1 in eq (1)
eV₁ = hf - ∅₁
eV = hc/λ - 3.6 eVolts
V = hc/eλ - 3.6 Volts
hc/eλ = V + 3.6 Volts ----- eq(2)
Metal 2 is illuminated with same wavelength so stopping potential V₂ is:
eV₂ = hf - ∅₂
eV₂ = hc/λ - 2.1 eVolts
V₂ = hc/eλ - 2.1 Volts ---- eq(3)
substituting eq(2) in eq(3)
V₂ = V + 3.6 Volts - 2.1 Volts
V₂ = V + 1.5 Volts