In order to determine the required force to stop the car, proceed as follow:
Calculate the deceleration of the car, by using the following formula:

where,
v: final speed = 0m/s (the car stops)
vo: initial speed = 36m/s
x: distance traveled = 980m
a: deceleration of the car= ?
Solve the equation above for a, replace the values of the other parameters and simplify:

Next, consider that the formula for the force is:

where,
m: mass of the car = 820 kg
a: deceleration of the car = 0.66m/s^2
Replace the previous values and simplify:

Hence, the required force to stop the car is 542.20N
A land form or land mass to be created over a long period of time
Answer:
Analogous
Explanation:
Momentum is linear
Angular momentum is spinning
momentum is based on the mass and has no geometric component.
Angular momentum is based on moment of inertia and greatly depends on how far the mass is from the center of spin.
By reading the fine details of the question, carefully and analytically, I have determined that there's no list of modifications to choose from.
The strength of the magnetic field of a solenoid depends on the electric current in its coil windings, the number of wire turns in its coil windings, and the material in its core.
In order to <em>DE</em>crease the strength of its magnetic field, any one or more of these steps could do the job:
-- DEcrease the electric current in its coil windings. This can be accomplished by decreasing the voltage of the power source that energizes the coil, and/or increasing the resistance of the wire in the coil.
-- DEcrease the number of wire turns in the coil.
-- If the solenoid has anything in its core, change the core to something with a lower magnetic 'permeability'. An Iron core will produce the greatest magnetic field strength. Air, vacuum, or NO core will produce the lowest magnetic field strength.