1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
trapecia [35]
3 years ago
13

How does kinetic energy affect the stopping distance of a small vehicle compared to a large vehicle?

Physics
1 answer:
Studentka2010 [4]3 years ago
8 0
Kinetic energy is the energy applied or present in a moving object. According to Newton's second law of motion the magnitude of acceleration of an object is proportional to the magnitude of the net force but inversely proportional to its mass. So the Kinetic Energy of a moving car of small vehicle is greater than the large vehicle if both are applied with the same net force. The greater the Kinetic Energy the longer the stopping distance
You might be interested in
You are driving to the grocery store at 14 m/s. You are 115 m from an intersection when the traffic light turns red. Assume that
kogti [31]

Answer:

111.5 m

Explanation:

Given that You are driving to the grocery store at 14 m/s. You are 115 m from an intersection when the traffic light turns red. Assume that your reaction time is 0.50 s and that your car brakes with constant acceleration. 

Use first equation of motion

V = U - at

Since the car is going to rest, V = 0 and a = negative

0 = 14 - a × 0.5

0.5a = 14

a = 14 /0.5

a = 28 m/s^2

Let us use second equation of motion

S = Ut - 1/2at^2

S = 14 × 0.5 - 0.5 × 28 × 0.5^2

S = 7 - 3.5

S = 3.5 m

115 - 3.5 = 111.5

Therefore, you are 111.5 metres from the intersection (in m) when you begin to apply the brakes.

6 0
3 years ago
A system gains 767 kJ of heat, resulting in a change in internal energy of the system equal to +151 kJ. How much work is done?
Crazy boy [7]

Answer:

The work done on the system is -616 kJ

Explanation:

Given;

Quantity of heat absorbed by the system, Q = 767 kJ

change in the internal energy of the system, ΔU = +151 kJ

Apply the first law of thermodynamics;

ΔU = W + Q

Where;

ΔU  is the change in internal energy

W is the work done

Q is the heat gained

W = ΔU  - Q

W = 151 - 767

W = -616 kJ (The negative sign indicates that the work is done on the system)

Therefore, the work done on the system is -616 kJ

6 0
3 years ago
What is the primary determinant of the voltage developed by a battery?
Fittoniya [83]
For the answer to the question above asking what is the primary determinant of the voltage developed by a battery?the answer is that the <span>the nature of the materials in the reaction that is the primary determinant of the voltage from a battery.</span>
5 0
3 years ago
Question 3 Please, i need help! Thank you
Tom [10]
I don't know this 1 I'm sorry I can't help you 
4 0
3 years ago
A ball is thrown horizontally from the top of a 55 m building and lands 150 m from the base of the building. Ignore air resistan
PtichkaEL [24]

Answer:

a) t =3.349 s

b) V_x,i = 44.8 m/s

c) V_y,f = 32.85 m/s

d)  V = 55.55 m/s

Explanation:

Given:

- Total throw in x direction x(f) = 150 m

- Total distance traveled down y(f) = 55 m

Find:

a) How long is the rock in the air in seconds.  

b) What must have been the initial horizontal component of the velocity, in meters per second?

c) What is the vertical component of the velocity just before the rock hits the ground, in meters per second?

d) What is the magnitude of the velocity of the rock just before it hits the ground, in meters per second?

Solution:

- Use the second equation of motion in y direction:

                                 y(f) = y(0) + V_y,i*t + 0.5*g*t^2

- V_y,i = 0 (horizontal throw)

                                 55 = 0 + 0 + 0.5*(9.81)*t^2

                                 t = sqrt ( 55 * 2 / 9.81 )

                                 t =3.349 s

- Use the second equation of motion in x direction:

                                 x(f) = x(0) + V_x,i*t

                                 150 = 0 + V_x,i*3.349

                                  V_x,i = 150 / 3.349 = 44.8 m/s

- Use the first equation of motion in y direction:

                                 V_y,f = V_y,i + g*t

                                 V_y,f = 0 + 9.81*3.349

                                 V_y,f = 32.85 m/s

- The magnitude of velocity of ball when it hits the ground is:

                                 V^2 = V_y,f^2 + V_x,i^2

                                 V = sqrt (32.85^2 + 44.8^2)

                                 V = 55.55 m/s

5 0
3 years ago
Other questions:
  • What is the “lag of seasons”?
    5·1 answer
  • Need help with number <br> 50 <br> PLEASE HELP! Show all work please!
    7·1 answer
  • Which is most likely an example of pseudoscience?
    5·2 answers
  • a 20N mass is supported by two ropes. what is the tension in each rope? how woould i work this problem if i know the two angles
    8·1 answer
  • An immersion heater of power J= 500 W is used to heat water in a bowl. After 2 minutes, the temperature increases from T1= 85°C
    11·1 answer
  • In the Milky Way Galaxy, where would you expect to find the bulge?
    14·1 answer
  • A seasoned mini golfer is trying to make par on a tricky number five hole. The golfer can complete the hole by hitting the ball
    15·1 answer
  • Two point charges of equal magnitude (and opposite sign) are 7.5 cm apart. At the midpoint of the line connecting them, their co
    9·1 answer
  • Describe how could you use an electromagnete to sort a mixture of iron and copper pieces into two seprate piles of iron and copp
    8·1 answer
  • A 500 lines per mm diffraction grating is illuminated by light of wavelength 580 nm . what is the maximum diffraction order seen
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!