Answer:
sin 2θ = 1 θ=45
Explanation:
They ask us to prove that the optimal launch angle is 45º, for this by reviewing the parabolic launch equations we have the scope equation
R = Vo² sin 2θ / g
Where R is the horizontal range, Vo is the initial velocity, g the acceleration of gravity and θ the launch angle. From this equation we see that the sine function is maximum 2θ = 90 since sin 90 = 1 which implies that θ = 45º; This proves that this is the optimum angle to have the maximum range.
We calculate the distance traveled for different angle
R = vo² Sin (2 15) /9.8
R = Vo² 0.051 m
In the table are all values in two ways
Angle (θ) distance R (x)
0 0 0
15 0.051 Vo² 0.5 Vo²/g
30 0.088 vo² 0.866 Vo²/g
45 0.102 Vo² 1 Vo²/g
60 0.088 Vo² 0.866 Vo²/g
75 0.051 vo² 0.5 Vo²/g
90 0 0
See graphic ( R Vs θ) in the attached ¡, it can be done with any program, for example EXCEL
Diffuse reflection have a great day
Answer:
1428.6m/s²
Explanation:
Given parameters:
Force applied on the body = 40N
Mass of the body = 28g
1000g = 1kg
28g will therefore be 0.028kg
Unknown:
Acceleration = ?
Solution:
To solve this problem, we use the expression derived from Newton's second law of motion.
Force = mass x acceleration
Insert the parameters and solve;
40 = 0.028 x acceleration
Acceleration = = 1428.6m/s²
Answer:
<h2>
The answer is </h2><h2>
a. 5g/mL</h2>
Explanation:
Given data
mass m= 45g
volume v= 9mL
we know that density=m/v
substituting our given data we have
What is Density?
The Density of a body can be defined as the ratio of mass to volume,
or
Density, mass of a unit volume of a material substance. The formula for density is ,
where d is density,
M is mass, and
V is volume.
Density is commonly expressed in units of grams per cubic centimetre.