First, we use avogadro's number to convert atoms into moles. Then, relate the number of moles from elemental to the compound. Lastly, we use conditions at STP to calculate the volume. We do as follows:
<span>9.86 x 10²⁸ O-atoms ( 1 mol / 6.022x10^23 atoms O) ( 1 mol N2O2 / 2 mol O ) ( 22.4 L / 1 mol ) = 1833809.37 L needed</span>
Answer:
Four seasons occur on Earth
Explanation:
When the Earth has completely one revolution around the Sun, then it has completed 1 year, and four seasons have occurred in the meantime.
According to Raoult's law the relative lowering of vapour pressure of a solution made by dissolving non volatile solute is equal to the mole fraction of the non volatile solute dissolved.
the relative lowering of vapour pressure is the ratio of lowering of vapour pressure and vapour pressure of pure solvent

Where
xB = mole fraction of solute=?

p = 22.8 torr

mole fraction is ratio of moles of solute and total moles of solute and solvent
moles of solvent = mass / molar mass = 500 /18 = 27.78 moles
putting the values




mass of glucose = moles X molar mass = 1.218 X 180 = 219.24 grams
Looking at the information given above, you will notice that, for cancer disease, the patient was sure that his parents and aunts did not have the disease condition but it does not know whether his grand parents and uncles have it or not. Therefore, he will have to find out more about history of cancer in the family.
For heart disease condition, his parents and uncles have heart problems. Because of this, the patient has to undergo preventative care for heart disease.
For diabetes condition, his grand parents have diabetes and he also thinks that his aunts have. Due to this fact, the patient also have to receive preventative care for diabetes.
Answer:
979 atm
Explanation:
To calculate the osmotic pressure, you need to use the following equation:
π = <em>i </em>MRT
In this equation,
-----> π = osmotic pressure (atm)
-----><em> i</em> = van't Hoff's factor (number of dissolved ions)
-----> M = Molarity (M)
-----> R = Ideal Gas constant (0.08206 L*atm/mol*K)
-----> T = temperature (K)
When LiCl dissolves, it dissociates into two ions (Li⁺ and Cl⁻). Therefore, van't Hoff's factor is 2. Before plugging the given values into the equation, you need to convert Celsius to Kelvin.
<em>i </em>= 2 R = 0.08206 L*atm/mol*K
M = 20 M T = 25°C + 273.15 = 298.15 K
π = <em>i </em>MRT
π = (2)(20 M)(0.08206 L*atm/mol*K)(298.15 K)
π = 979 atm