1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Cerrena [4.2K]
3 years ago
9

What do the coefficients located before certain molecules in each chemical equation represent?

Chemistry
1 answer:
olga55 [171]3 years ago
6 0
It represents the number of moles required of that molecule to balance the chemical equation, which means to have the reaction chemically happen and goes to completion.

For example:
CH4 + O2 --> H2O + CO2     that is not balanced

with the coefficients located
CH4 + 2O2 --> 2H2O + CO2    now with the coefficients the number of oxygen and hydrogen on each side are equal
You might be interested in
Reaction time is a stimulus reaponse ______ ? A ) instant B) complex. C) simple . D) automatic
lina2011 [118]
Reactions happen instantly even if some are slower than others they all happen instantly so the answer would be A.
5 0
4 years ago
Read 2 more answers
The osmotic pressure of a solution containing 2.04 g of an unknown compound dissolved in 175.0 mLof solution at 25 ∘C is 2.13 at
kherson [118]

<u>Answer:</u> The molecular formula of the compound is C_4H_{10}O_4

<u>Explanation:</u>

To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

\pi=iMRT

Or,

\pi=i\times \frac{\text{Mass of solute}\times 1000}{\text{Molar mass of solute}\times \text{Volume of solution (in mL)}}\times RT

where,

\pi = osmotic pressure of the solution = 2.13 atm

i = Van't hoff factor = 1 (for non-electrolytes)

Given mass of compound = 2.04 g

Volume of solution = 175.0 mL

R = Gas constant = 0.0821\text{ L atm }mol^{-1}K^{-1}

T = temperature of the solution = 25^oC=[273+25]=298K

Putting values in above equation, we get:

2.13atm=1\times \frac{2.04\times 1000}{\text{Molar mass of compound}\times 175.0}\times 0.0821\text{ L.atm }mol^{-1}K^{-1}\times 298K\\\\\text{Molar mass of compound}=\frac{1\times 2.04\times 1000\times 0.0821\times 298}{2.13\times 175.0}=133.9g/mol

  • <u>Calculating the molecular formula:</u>

The chemical equation for the combustion of compound having carbon, hydrogen and oxygen follows:

C_xH_yO_z+O_2\rightarrow CO_2+H_2O

where, 'x', 'y' and 'z' are the subscripts of carbon, hydrogen and oxygen respectively.

We are given:

Mass of CO_2=36.26g

Mass of H_2O=14.85g

We know that:

Molar mass of carbon dioxide = 44 g/mol

Molar mass of water = 18 g/mol

<u>For calculating the mass of carbon:</u>

In 44 g of carbon dioxide, 12 g of carbon is contained.

So, in 36.26 g of carbon dioxide, \frac{12}{44}\times 36.26=9.89g of carbon will be contained.

<u>For calculating the mass of hydrogen:</u>

In 18 g of water, 2 g of hydrogen is contained.

So, in 14.85 g of water, \frac{2}{18}\times 14.85=1.65g of hydrogen will be contained.

Mass of oxygen in the compound = (22.08) - (9.89 + 1.65) = 10.54 g

To formulate the empirical formula, we need to follow some steps:

  • <u>Step 1:</u> Converting the given masses into moles.

Moles of Carbon = \frac{\text{Given mass of Carbon}}{\text{Molar mass of Carbon}}=\frac{9.89g}{12g/mole}=0.824moles

Moles of Hydrogen = \frac{\text{Given mass of Hydrogen}}{\text{Molar mass of Hydrogen}}=\frac{1.65g}{1g/mole}=1.65moles

Moles of Oxygen = \frac{\text{Given mass of oxygen}}{\text{Molar mass of oxygen}}=\frac{10.54g}{16g/mole}=0.659moles

  • <u>Step 2:</u> Calculating the mole ratio of the given elements.

For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 0.659 moles.

For Carbon = \frac{0.824}{0.659}=1.25\approx 1

For Hydrogen = \frac{1.65}{0.659}=2.5

For Oxygen = \frac{0.659}{0.659}=1

Converting the mole fraction into whole number by multiplying the mole fraction by '2'

Mole fraction of carbon = (1 × 2) = 2

Mole fraction of oxygen = (2.5 × 2) = 5

Mole fraction of hydrogen = (1 × 2) = 2

  • <u>Step 3:</u> Taking the mole ratio as their subscripts.

The ratio of C : H : O = 2 : 5 : 2

The empirical formula for the given compound is C_2H_5O_2

For determining the molecular formula, we need to determine the valency which is multiplied by each element to get the molecular formula.

The equation used to calculate the valency is:

n=\frac{\text{Molecular mass}}{\text{Empirical mass}}

We are given:

Mass of molecular formula = 133.9 g/mol

Mass of empirical formula = 61 g/mol

Putting values in above equation, we get:

n=\frac{133.9g/mol}{61g/mol}=2

Multiplying this valency by the subscript of every element of empirical formula, we get:

C_{(2\times 2)}H_{(5\times 2)}O_{(2\times 2)}=C_4H_{10}O_4

Hence, the molecular formula of the compound is C_4H_{10}O_4

4 0
3 years ago
Titanium is a transition metal used in many alloys because it is extremely strong and lightweight. Titanium tetrachloride (TiCl4
vova2212 [387]

Answer:

a) 226.6 grams of Cl₂

b) 19.2 grams of C

c) 303.2 grams of TiCl₄ and 70.4 grams of CO₂

Explanation:

The balanced chemical reaction is the following:

TiO₂(s) + C(s) + 2 Cl₂(g) → TiCl₄(s) + CO₂(g)

(a) What mass of Cl₂ gas is needed to react with 1.60 mol TiO₂?

From the chemical equation, 1 mol of TiO₂ reacts with 2 moles of Cl₂. So, the stoichiometric ratio is 2 mol Cl₂/1 mol TiO₂. We multiply this ratio by the moles of TiO₂ we have to calculate the moles of Cl₂ we need:

1.60 mol TiO₂ x 2 mol Cl₂/1 mol TiO₂ = 3.2 mol Cl₂

Now, we convert from moles to mass by using the molecular weight (MW) of Cl₂:

MW(Cl₂) = 35.4 g/mol x 2 = 70.8 g/mol

mass of Cl₂= 3.2 mol x 70.8 g/mol = 226.6 g

<em>Therefore, 226.6 grams of Cl₂ are needed to react with 1.6 mol of TiO₂. </em>

(b) What mass of C is needed to react with 1.60 mol of TiO₂?

From the chemical equation, 1 mol of TiO₂ reacts with 1 moles of C(s). So, the stoichiometric ratio is 1 mol C/1 mol TiO₂. We multiply this ratio by the moles of TiO₂ we have to calculate the moles of C(s) we need:

1.60 mol TiO₂ x 1 mol C(s)/1 mol TiO₂ = 1.60 mol C(s)

So, we convert the moles of C(s) to grams as follows:

MW(C) = 12 g/mol

1.60 mol x 12 g/mol = 19.2 g C(s)

<em>Therefore, a mass of 19.2 grams of C is needed to react with 1.60 mol of TiO₂. </em>

(c) What is the mass of all the products formed by reaction with 1.60 mol of TiO₂?

From the chemical equation, we can notice that 1 mol of TiO₂ produces 1 mol of TiCl₄ and 1 mol of CO₂. So, from 1.60 moles of TiO₂, 1 mol of each product will be produced:

1 mol TiO₂/1 mol TiCl₄ ⇒ 1.60 mol TiO₂/1.60 mol TiCl₄

1 mol TiO₂/1 mol CO₂ ⇒ 1.60 mol TiO₂/1.60 mol CO₂

Finally, we convert the moles to grams by using the molecular weight of each compound:

MW(TiCl₄) = 47.9 g/mol Ti + (35.4 g/mol x 4 Cl) = 189.5 g/mol

1.60 mol x 189.5 g/mol = 303.2 g

MW(CO₂) = 12 g/mol C + (16 g/mol x 2 O) = 44 g/mol

1.60 mol x 44 g/mol = 70.4 g

<em>Therefore, from the reaction of 1.60 mol of TiO₂ are formed 303.2 grams of TiCl₄ and 70.4 grams of CO₂.</em>

3 0
3 years ago
How many moles are in 6.80 x 10^23 atoms <br> of gold, Au?
frosja888 [35]

Answer:

1.13 moles Au

Explanation:

Moles Au = 6.80x10²³atoms / 6.023x10²³atoms/mole = 1.13 moles Au

8 0
3 years ago
What is the difference between Hydrolysis and Hydration?​
Grace [21]
Hydrolysis involves the reaction of water with another compound.Hydrolysis is the process in which the bond breaks due to addition of water whereas in hydration there is just addition of water, the molecule doesn’t break down.
7 0
3 years ago
Read 2 more answers
Other questions:
  • PLEASE HELP ME!!!!!!!!!!!!!!!!!!!!!!!!!
    12·1 answer
  • What effect does reducing your carbon footprint have on the environment?
    6·1 answer
  • If the uncompressed gas in the above system has a volume of 300.0 mL at a pressure of 20.0 kPa, what is the volume of the gas wh
    6·1 answer
  • 16. What mass of sulfur has to burn to produce 4.5L SO2 at 300°C and 101 kPa in the following reaction? A. 41.0 g S B. 3.07 g S
    14·1 answer
  • Please help me balance:<br>_NaNO3 + _PbO_ ➡️ Pb(NO3)2 + _Na2O
    6·1 answer
  • Can someone please help it is due tonight!
    5·2 answers
  • A mixture of gases at 2.99 atm can You have two gases, and , at the same temperature. Determine the ratio of effusion rates of a
    8·1 answer
  • What happened when we made the predator(snake) population larger?
    8·1 answer
  • 1.
    13·1 answer
  • PLSSSS ANSWER!!!!!!!!!!!!!
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!