1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dovator [93]
3 years ago
10

during a 3.00 s time interval,the runners position changes from x1=50.0m to x2=30.5m what was the runners average velocity

Physics
1 answer:
UNO [17]3 years ago
7 0
Average velocity is given by the ratio of total displacement /total time taken in order to do that
thus it will be
30.5-50.0/3 = 6.5 m/s
You might be interested in
Explain why a roller coaster’s second hill cannot be taller than the first hill.
max2010maxim [7]
There will not be enough momentum from the first hill to cross another hill if he same or larger size because of the way potential energy and kinetic energy works it will not be able go as high as it could go on he fist hill.
4 0
3 years ago
Read 2 more answers
A rock is thrown at a window that is located 18.0 m above the ground. The rock is thrown at an angle of 40.0° above horizontal.
Korvikt [17]

Answer:

B) 27.3 m

Explanation:

The rock describes a parabolic path.

The parabolic movement results from the composition of a uniform rectilinear motion (horizontal ) and a uniformly accelerated rectilinear motion of upward or downward motion (vertical ).

The equation of uniform rectilinear motion (horizontal ) for the x axis is :

x =  vx*t   Equation (1)

Where:  

x: horizontal position in meters (m)

t : time (s)

vx: horizontal velocity  in m/s  

The equations of uniformly accelerated rectilinear motion of upward (vertical ) for the y axis  are:

(vfy)² = (v₀y)² - 2g(y- y₀)    Equation (2)

vfy = v₀y -gt    Equation (3)

Where:  

y: vertical position in meters (m)  

y₀ : initial vertical position in meters (m)  

t : time in seconds (s)

v₀y: initial  vertical velocity  in m/s  

vfy: final  vertical velocity  in m/s  

g: acceleration due to gravity in m/s²

Data

v₀ = 30 m/s , at an angle  α=40.0° above the horizontal

v₀x = vx = 30*cos40° = 22.98 m/s

v₀y = 30*sin40° = 19.28 m/s

y₀ = 2m

y =  18.0 m

g = 9.8 m/s²

Calculation of the time (t) it takes for the rock to reach at  18 m above the ground

We replace data in the equation (2)

(vfy)² = (v₀y)² - 2g(y- y₀)    

(vfy)² = (19.28)² - 2(9.8)(18- 2)

(vfy)² = 371.86 - 313.6

(vfy)² = 58.26

v_{f} = \sqrt{58.26}

vfy = 7.63 m/s

We replace vfy = 7.63 m/s in the equation (2)

vfy = v₀y - gt

7.63 = 19.28 - (9.8)(t)

(9.8)(t) = 11.65

t = 11.65 / (9.8)

t = 1.19 s

Horizontal distance from where the rock was thrown to the window

We replace t = 1.19 s , in the equation (1)

x =  vx*t  

x = (22.98)* ( 1.19 )

x = 27.3 m

3 0
3 years ago
Someone help please i need to finish this
Tom [10]

Answer:

4th answer

Explanation:

The gradient of a distance-time graph gives the speed.

gradient = distance / time = speed

Here, the gradient is a constant till 30s. So it has travelled at a constant speed. It means it had not accelarated till 30s. and has stopped moving at 30s.

6 0
2 years ago
In an RLC series circuit that includes a source of alternating current operating at fixed frequency and voltage, the resistance
maw [93]

Answer:

Capacitive Reactance is 4 times of resistance

Solution:

As per the question:

R = X_{L} = j\omega L = 2\pi fL

where

R = resistance

X_{L} = Inductive Reactance

f = fixed frequency

Now,

For a parallel plate capacitor, capacitance, C:

C = \frac{\epsilon_{o}A}{x}

where

x = separation between the parallel plates

Thus

C ∝ \frac{1}{x}

Now, if the distance reduces to one-third:

Capacitance becomes 3 times of the initial capacitace, i.e., x' = 3x, then C' = 3C and hence Current, I becomes 3I.

Also,

Z = \sqrt{R^{2} + (X_{L} - X_{C})^{2}}

Also,

Z ∝ I

Therefore,

\frac{Z}{I} = \frac{Z'}{I'}

\frac{\sqrt{R^{2} + (R - X_{C})^{2}}}{3I} = \frac{\sqrt{R^{2} + (R - \frac{X_{C}}{3})^{2}}}{I}

{R^{2} + (R - X_{C})^{2}} = 9({R^{2} + (R - \frac{X_{C}}{3})^{2}})

{R^{2} + R^{2} + X_{C}^{2} - 2RX_{C} = 9({R^{2} + R^{2} + \frac{X_{C}^{2}}{9} - 2RX_{C})

Solving the above eqn:

X_{C} = 4R

6 0
3 years ago
Two boxers are fighting. Boxer 1 throws his 5 kg fist at boxer 2 with a speed of 9 m/s.
Sladkaya [172]

Answer:

0.001 s

Explanation:

The force applied on an object is equal to the rate of change of momentum of the object:

F=\frac{\Delta p}{\Delta t}

where

F is the force applied

\Delta p is the change in momentum

\Delta t is the time interval

The change in momentum can be written as

\Delta p=m(v-u)

where

m is the mass

v is the final velocity

u is the initial velocity

So the original equation can be written as

F=\frac{m(v-u)}{\Delta t}

In this problem:

m = 5 kg is the mass of the fist

u = 9 m/s is the initial velocity

v = 0 is the final velocity

F = -45,000 N is the force applied (negative because its direction is opposite to the motion)

Therefore, we can re-arrange the equation to solve for the time:

\Delta t=\frac{m(v-u)}{F}=\frac{(5)(0-9)}{-45,000}=0.001 s

4 0
3 years ago
Other questions:
  • Do deaf children go through the four stages of acquiring language? Use what you’ve read in the chapter to explain why or why not
    6·1 answer
  • Someone help plzz :))
    7·2 answers
  • Two ice skaters suddenly push off against one another starting from a stationary position. The 45-kg skater acquires a speed of
    7·1 answer
  • 8. A point of Charge +3.0 X 10^-7 Coulomb is placed 2.0 X 10^-2 from a second
    15·1 answer
  • Drop interesting and usefuk facts down here plesse and i'll give the most interesting one brainliest
    7·1 answer
  • Question 3 of 5
    14·1 answer
  • State Newton’s law of universal gravitation in words. Then do the same with one equation
    5·1 answer
  • What can be used to plot the magnetic field around a bar magnet?
    11·1 answer
  • A small sphere of reference-grade iron with a specific heat of 447 J/kg K and a mass of 0.515 kg is suddenly immersed in a water
    14·1 answer
  • ANSWER FOR BRAINLIEST PLS AND FAST
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!