Answer:
;,knbbbknnbkhbln bhbj k; b; m j
Explanation:
Answer:

Explanation:
A galvanic cell is composed of two electrodes immersed in a suitable electrolyte and connected via a salt bridge. One of the electrodes serves as a cathode where reduction or gain of electrons takes place. The other half cell functions as an anode where oxidation or loss of electrons occurs.
The representation is given by writing the anode on left hand side followed by its ion with its molar concentration. It is followed by a salt bridge. Then the cathodic ion with its molar concentration is written and then the cathode.
As it is given that cadmium acts as anode, it must be on the left hand side and copper must be on right hand side.

Answer:
Solid phosphorus reacts with gaseous oxygen to produce solid diphosphorus pentaoxide. ... Methanol burns in oxygen to produce carbon dioxide gas and water vapor.
Explanation:
Solid phosphorus reacts with gaseous oxygen to produce solid diphosphorus pentaoxide. ... Methanol burns in oxygen to produce carbon dioxide gas and water vapor.
Atoms are the basic units of matter and the defining structure of elements. We count the number of atoms by the total number of elements present in the compound. In this case, we have 1 atom of Si and 2 atoms of oxygen which would have 3 total number of atoms.
Answer: Gases are complicated. They're full of billions and billions of energetic gas molecules that can collide and possibly interact with each other. Since it's hard to exactly describe a real gas, people created the concept of an Ideal gas as an approximation that helps us model and predict the behavior of real gases. The term ideal gas refers to a hypothetical gas composed of molecules which follow a few rules:
Ideal gas molecules do not attract or repel each other. The only interaction between ideal gas molecules would be an elastic collision upon impact with each other or an elastic collision with the walls of the container. [What is an elastic collision?]
Ideal gas molecules themselves take up no volume. The gas takes up volume since the molecules expand into a large region of space, but the Ideal gas molecules are approximated as point particles that have no volume in and of themselves.
If this sounds too ideal to be true, you're right. There are no gases that are exactly ideal, but there are plenty of gases that are close enough that the concept of an ideal gas is an extremely useful approximation for many situations. In fact, for temperatures near room temperature and pressures near atmospheric pressure, many of the gases we care about are very nearly ideal.
If the pressure of the gas is too large (e.g. hundreds of times larger than atmospheric pressure), or the temperature is too low (e.g.
−
200
C
−200 Cminus, 200, start text, space, C, end text) there can be significant deviations from the ideal gas law.
Explanation: