Answer:There is no relationship between the viscosity and density of a fluid. While viscosity is the thickness or thinness of a fluid, density refers to the space between its particles. However, both properties are affected by temperature. When a fluid is heated, its particles move far apart, and it also becomes less viscous.
Answer:
The rate of disappearance of C₂H₆O = 2.46 mol/min
Explanation:
The equation of the reaction is given below:
2 K₂Cr₂O₇ + 8 H₂SO₄ + 3 C₂H₆O → 2 Cr₂(SO₄)₃ + 2 K₂SO₄ + 11 H₂O
From the equation of the reaction, 3 moles of C₂H₆O is used when 2 moles of Cr₂(SO₄)₃ are produced, therefore, the mole ratio of C₂H₆O to Cr₂(SO₄)₃ is 3:2.
The rate of appearance of Cr₂(SO₄)₃ in that particular moment is given 1.64 mol/min. This would than means that C₂H₆O must be used up at a rate which is approximately equal to their mole ratios. Thus, the rate of of the disappearance of C₂H₆O can be calculated from the mole ratio of Cr₂(SO₄)₃ and C₂H₆O.
Rate of disappearance of C₂H₆O = 1.64 mol/min of Cr₂(SO₄)₃ * 3 moles of C₂H₆O / 2 moles of Cr₂(SO₄)₃
Rate of disappearance of C₂H₆O = 2.46 mol/min of C₂H₆O
Therefore, the rate of disappearance of C₂H₆O = 2.46 mol/min
Sulfur reacts with oxygen to produce sulfur dioxide. That is for every mole of sulfur reacted, one mole of sulfur dioxide also is produced. With the given mole of sulfur dioxide, the amount of sulfur in mass is determined by multiplying the number of moles to the molar mass of sulfur (32 g/mol).
The solution for this problem is:
Get into moles first. .0560 grams over 540.8 grams per mole = 1.04 x l0^-4 moles
Sr3(As04)2 = 3 Sr++(aq) plus 2 As04^-3(aq)
Ksp = (Sr++)^3(As04^-3)^2
(Sr++) = 3 X 1.04 x l0^-4= 3.11 x l0^-4
(As04^-3) = 2 x 1.04 x l0^-4= 2.07 x l0^-4
Ksp = (1.04 x l0^-4)^3 (2.07 x l0^-4)^2 which equals 4.82 x 10^-20
Answer:
Substance B, boiling point of 105 °C
Explanation:
Non volatile substances have high boiling points