Answer:
6104 N/C.
Explanation:
Given:
k = 8.99 × 10^9 Nm2/C^2
Qx = 1.3 × 10^-5 C
rx = 7 m
Qy = 1 × 10−5 C
ry = 4 m
E = F/Q
= kQ/r^2
Ex = (8.99 × 10^9 × 1.3 × 10^−5) ÷ 7^2
= 2385.1 N/C.
Ey = (8.99 × 10^9 × 1.0 × 10^−5) ÷ 4^2
= 5618.75 N/C
Eo = sqrt(Ex^2 + Ey^2)
= sqrt(3.157 × 10^7 + 5.69 × 10^6)
= 6104 N/C.
amount of work done is 5880 J
Given:
mass of object = 50kg
Final height = 20m
initial height = 8m
To Find:
amount of work done
Solution:
work is done when a force acts upon an object to cause a displacement. You can calculate the energy transferred, or work done, by multiplying the force by the distance moved in the direction of the force.
The work done by gravity is given by the formula,
W = mgh
W = 50 x 9.8 x ( 20-8)
= 5880 J
So the work done is 5880 J
Learn more about Work done here:
brainly.com/question/25239010
#SPJ4
Answer:
B. Smaller than the acceleration of the bullet.
Explanation:
According to the law of conservation of momentum; the total momentum of the gun and bullet after firing is equal to the total momentum of the gun and bullet before firing.
However, the mass of gun is much larger than that of the bullet hence it follows that the velocity and acceleration during the recoil of the rifle is much smaller in comparison to the velocity and acceleration of the of bullet.
So; the acceleration of the rifle is given by the force exerted on the rife by the bullet divided by the mass of the rifle. Given that the mass of the rifle is much greater than the mass of the bullet, the acceleration of the rifle is much less than that of the bullet.
The heat energy which has to be supplied to change the state of a substance is called its latent heat. Latent heat does not increase the kinetic energy of the particles of the substance, so the temperature of a substance does not rise during the change of state. :))
Answer:
OPTION A is the correct answer