The velocity of B after elastic collision is 3.45m/s
This type of collision is an elastic collision and we can use a formula to solve this problem.
<h3>Elastic Collision</h3>

The data given are;
- m1 = 281kg
- u1 = 2.82m/s
- m2 = 209kg
- u2 = -1.72m/s
- v1 = ?
Let's substitute the values into the equation.

From the calculation above, the final velocity of the car B after elastic collision is 3.45m/s.
Learn more about elastic collision here;
brainly.com/question/7694106
Answer:
Explanation:
Given,
initial angular speed, ω = 3,700 rev/min
=
final angular speed = 0 rad/s
Number of time it rotates= 46 times
angular displacement, θ = 2π x 46 = 92 π
Angular acceleration



Answer:
The particle path will follow
(d) a circular path
Explanation:
When a charged particle having charge of magnitude '
' enters into a magnetic field such that its velocity vector '
' is perpendicular to the direction of the magnetic field '
', then it will experience a force, called Lorentz force (
), given by

As shown in the figure, the magnetic field is directed perpendicular to the plane and towards the plane (as shown by the circle and 'X'-sign) and the velocity vector is from left to right on the plane.
According to the property of cross-product, the Lorentz force (
) acting on the particle will be perpendicular to the instantaneous position of the particle, making the path of the particle to be a circular path,as shown in the figure.
By using the equation speed = distance/time we can solve for distance. The speed is 4 m/s and the time is 12 seconds. We need to rearrange the equation to Speed * Time = distance. 4(12) = 48; 48 = distance. The cliff is 48 meters high.
Answer:
Distance covered by Joe, d = 5 km
Explanation:
It is given that,
Speed of Joe, v = 20 km/hour
Time taken by Joe, t = 15 minutes = 0.25 h
We need to find the distance he is covering. It can be calculated using definition of speed as :
d = 5 km
So, Joe covers a distance of 5 km. Hence, this is the required solution.