Answer:
The answer <em><u>is C. Mars</u></em>. Mars and Mercury are both smaller than Earth's core. Hope this helps you :)
Answer:
option E
Explanation:
the correct answer is option E
the direction of magnetic field will be found out with the help of right hand rule.
Put you palm in the direction of electric field and curl your finger in the direction of magnetic field which east direction.
now, the direction shown by the thumb will be the direction of magnetic field which comes out to be toward South direction.
Answer:
No the given statement is not necessarily true.
Explanation:
We know that the kinetic energy of a particle of mass 'm' moving with velocity 'v' is given by

Similarly the momentum is given by 
For 2 particles with masses
and moving with velocities
respectively the respective kinetic energies is given by


Similarly For 2 particles with masses
and moving with velocities
respectively the respective momenta are given by


Now since it is given that the two kinetic energies are equal thus we have

Thus we infer that the moumenta are not equal since the ratio on right of 'i' is not 1 , and can be 1 only if the velocities of the 2 particles are equal which becomes a special case and not a general case.
Which of the following is not a an example of dissipated energy?
b. kinetic
When energy is changed from one form to another, ____.
b. all of the energy can be accounted for
Answer:

Explanation:
Given that,
Current, I = 2 A
Voltage across the resistor, V = 18 V
We need to find the value of resistance of the resistor. Let the resistance be R. We can find it using Ohm's law i.e.
V = IR
Where
R is the resistance of the resistor

So, the resistance of the resistor is equal to
.