Answer:
2.77 * 10^5 m/s
Explanation:
Let us recall that kinetic energy is given by 1/2 mv^2
Where;
m = mass of the body
v = velocity of the body
In this case,
m = 3.38 * 10^31 kg
KE= 1.30 * 10^42 J
KE = 1/2 mv^2
v = √2KE/m
v = √2 * 1.30 * 10^42/3.38 * 10^31
v = √7.69 * 10^10
v = 2.77 * 10^5 m/s
Answer:
Explanation:
go around your house and tap random objects. For example, a sink. What noise did it make? was it loud or quiet? was it soft or hard? I hope this helps
The flower absorbs all light but purple, making it appear, purple!
The answer is A. voice uses a wider range of pitch and volume as compared to speaking
The average velocity or displacement of a particle for the first time interval is <u>Δs / Δt = 6 cm/s.</u>
Solution:
As we know that displacement is calculated in centimeters and the unit of time is second.
The average velocity for the first interval [1,2] is given
Δs / Δt = s (t2) - s (t) / t2 - t1
Δs / Δt = 2sin2 π + 3cos 2 π - ( 2sin π + 3cos π ) / 2 - 1
Δs / Δt = 2(0) + 3(1) - 2(0) - 3 (-1) / 1
Δs / Δt = 6 cm/s
Thus the average velocity or displacement of a particle for the first time interval is Δs / Δt = 6 cm/s
If you need to learn more about displacement click here:
brainly.com/question/28370322
#SPJ4
The complete question is:
The displacement of a particle moving back and forth along a line is given by the following equation s(t) = 2sin π t + 3cos π t. Estimate the instantaneous velocity of the particle when t = 1