1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Amiraneli [1.4K]
1 year ago
11

Help :((((((((((((((((((((

Physics
1 answer:
Ann [662]1 year ago
4 0

3-6 seconds time interval is the object slowing down.

The correct option is C.

<h3>What is a time interval?</h3>

The time interval is the span of time among two specified times. To put it another way, it is the amount of time that has passed between the event's start and finish.

<h3>What are different time intervals?</h3>

The time interval is the length of time that the aim uses to gather data and determine values. The critical overview can be one or more seconds, minutes, hours, days, weeks, or months. The period must be greater than zero and positive. When providing minutes, the amount of minutes must divide evenly by 60.

To know more about Time interval visit:

brainly.com/question/28238258

#SPJ13

The complete question is -

During which time interval is the object slowing down ?

a- 8-10 seconds

b- 6-8 seconds

c- 3-6 seconds

d- 0-3 seconds

You might be interested in
What is the hang time when the person moves 6 m horizontally during a 1.25 m high jump?
AlekseyPX

Answer:

1 sec

Explanation:

Horizontal distance (x) = 6m

Vertical distance (y) = 1.25m

Hang time is the duration the object is in the air before it reaches maximum height.

The time of free fall is given by

t = √2y/g

g = acceleration due to gravity

t = √(2*1.25)/9.8

t = √2.5/9.8

t = 0.5secs

Hang time = 2*0.5

= 1 sec

3 0
3 years ago
Which types of numbers does scientific notation best describe?
Travka [436]
The correct answer is
<span>c) very small and very large

Let's see this with a few examples:
1) if we have a very small number, such as
</span>0.0000000001
<span>we see that we can write it easily by using the scientific notation:
</span>1\cdot 10^{-10}
<span>2) Similarly, if we have a very large number:
</span>10000000000
<span>we see that we can write it easily by using again the scientific notation:
</span>1 \cdot 10^{10}<span>
</span>
4 0
3 years ago
When you irradiate a metal with light of wavelength 433 nm in an investigation of the photoelectric effect, you discover that a
sergij07 [2.7K]

Answer:

The right solution is:

(a) 2.87 eV

(b) 1.4375 eV

Explanation:

Given:

Wavelength,

= 433 nm

Potential difference,

= 1.43 V

Now,

(a)

The energy of photon will be:

E = \frac{6.626\times 10^{-34}\times 3\times 10^8}{433\times 10^{-9}}

  = 4.59\times 10^{-19} \ J

or,

  = \frac{4.59\times 10^{-19}}{1.6\times 10^{-19}}

  = 2.87 \ eV

(b)

As we know,

⇒ Vq=\frac{hc}{\lambda}-\Phi_0

By substituting the values, we get

⇒ 1.43\times 1.6\times 10^{19}=\frac{6.626\times 10^{-34}\times 3\times 10^8}{433\times 10^{-9}}-\Phi_0

⇒                       \Phi_0=2.3\times 10^{-19} \ J

or,

⇒                            =\frac{2.3\times 10^{-19}}{1.6\times 10^{-19}}

⇒                            =1.4375 \ eV

5 0
3 years ago
A charge of 7.2 × 10-5 C is placed in an electric field with a strength of 4.8 × 105 StartFraction N over C EndFraction. If the
barxatty [35]

Answer:

2.2 meters

Explanation:

Potential energy, PE created by a charge, q at a radius r from the charge source, Q,  is expressed as:

KE=\frac{kQq}{r}\     \ \ \ \ \ \ ...i

k is Coulomb's constant.

#The electric field,E at radius r is expressed as:

E=\frac{kQ}{r^2}\ \ \ \ \ \ \ \ \ \ ...ii

From i and ii, we have:

KE=Eqr

r=(KE)/Eq

#Substitute actual values in our equation:

r=\frac{75J}{(7.2\times 10^{-5}C)(4.8\times 10^5 V/m)}\\\\=2.1701\approx2.2\ m

Hence, the distance between the charge and the source of the electric field is 2.2 meters

7 0
3 years ago
Read 2 more answers
The speed of light in air is 3 x 108 m/s. The speed of light in ice is 2.29 x 108 m/s. What is the refractive index from air to
Studentka2010 [4]

Answer:

η = 1.31

Explanation:

The formula for the refractive index of from air to some other medium is given by the following formula:

\eta = \frac{c}{v}\\

where,

η = refractive index = ?

c = speed of light in air = 3 x 10⁸ m/s

v = speed of light in ice = 2.29 x 10⁸ m/s

Therefore, using these values in the equation we get:

\eta = \frac{3\ x\ 10^8\ m/s}{2.29\ x\ 10^8\ m/s} \\

<u>η = 1.31</u>

4 0
3 years ago
Other questions:
  • The driver of a 1,000 kg car travelling at a speed of 16.7 m/s applies the car's brakes when he sees a red light. the car's brak
    13·2 answers
  • A tennis player hits a 1.45 kg tennis ball with a racket of mass 2.5 kg. If he hits the ball with a velocity of 7.5 m/s and then
    11·1 answer
  • The table below shows two types of electromagnetic waves and three random applications of electromagnetic waves.
    14·1 answer
  • A 7.0kg skydiver is descending with a constant velocity
    14·1 answer
  • Bohr found experimental evidence for his atomic model by studying what?
    13·1 answer
  • WILL MARK BRAINLIEST!<br> WORTH A LOT OF POINTS!
    9·2 answers
  • (Q022) A negative magnetic anomaly a. occurs when the Earth's magnetic field measured in ancient rocks is the same as it is toda
    12·1 answer
  • Mind being a helping hand? I know ABSOLUTELY nothing about air resistance.. It's still science for me so I guess I'll put it as
    8·1 answer
  • A 2.0 x 10^3-kilogram car travels at a constant speed of 12 meters per second around a circular curve of radius 30. meters. What
    7·1 answer
  • Who was th efirst person to come up with the idea of the atoms.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!