Answer:
Average atomic mass of the vanadium = 50.9415 amu
Isotope (I) of vanadium' s abundance = 99.75 %= 0.9975
Atomic mass of Isotope (I) of vanadium ,m= 50.9440 amu
Isotope (II) of vanadium' s abundance =(100%- 99.75 %) = 0.25 % = 0.0025
Atomic mass of Isotope (II) of vanadium ,m' = ?
Average atomic mass of vanadium =
m × abundance of isotope(I) + m' × abundance of isotope (II)
50.9415 amu =50.9440 amu× 0.9975 + m' × 0.0025
m'= 49.944 amu
Explanation:
First we need to know that the boiling point of water in C is 100 and we just need to solve for x in the equation:
-33.75-(-77.75) / 100 = 100-(-77.75) / x
44.4/100 = 177.75 / x
x = 177.75*100/44.4 = 400.33
The boiling point of water in ∘a would be 400.33∘a.
Do it urself ;) jdhdhdhdhdhhdhdhdhdhdhdhdhdhgdhd
<span>i get 3.19x10^20 atoms
</span>
Answer:
When two single single bonds separated by a double bond (e.g C=C-C=C or C=C-C=O in the case of 2-cyclohexenone), the effect of resonance among those there bonds will be observed.
Explanation:
Since the Oxygen atom has higher electronegativity, it will cause the electrons in the resonance bonds 'flow' toward the Oxygen atom, so that the C=C will 'lose' some electron. The signal read for that bond will be different from other alkene structure.
Attachment is the resonance structure of 2-cyclohexene.