An independent variable is a variable that does not depend on anything. It is manipulated to determine the value of a dependent variable<span>. The dependent variable is what is being measured in an experiment or evaluated in a mathematical equation and the independent variables are the inputs to that measurement. Example: Time would always be an independent variable because nothing affects time, however, time can affect everything. </span>
Answer:
Question 1)
a) The speed of the drums is increased from 2 ft/s to 4 ft/s in 4 s. From the below kinematic equations the acceleration of the drums can be determined.

This is the linear acceleration of the drums. Since the tape does not slip on the drums, by the rule of rolling without slipping,

where α is the angular acceleration.
In order to continue this question, the radius of the drums should be given.
Let us denote the radius of the drums as R, the angular acceleration of drum B is
α = 0.5/R.
b) The distance travelled by the drums can be found by the following kinematics formula:

One revolution is equal to the circumference of the drum. So, total number of revolutions is

Question 2)
a) In a rocket propulsion question, the acceleration of the rocket can be found by the following formula:

b) 
Answer:
power requirement is 23.52 ×
W
Explanation:
given data
flow rate q = 2 m³/s
elevation h = 1200 m
density of the water ρ = 1000 kg/m³
to find out
power requirement
solution
we will get power by the power equation that is
power = ρ× Q× g× h ...................1
put here all value we get power
power = ρ× Q× g× h
power = 1000 × 2 × 9.8 × 1200
power = 23.52 ×
so power requirement is 23.52 ×
W