1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maks197457 [2]
1 year ago
10

The speed of sound in water is 1,492 m/s. A sonar signal is sent straight down from a ship at a point just below the water's sur

face and 7.5 s later the reflected signal is detected. How deep is the ocean beneath the ship?
Physics
1 answer:
ASHA 777 [7]1 year ago
6 0

Answer:

5595 m

Explanation:

The wave travels down   (the depth) and the back up (the depth again)

  this distance is     2 d

2 d =  1492 m/s * 7.5 s

2d = 11190 m

d = 5595 m

You might be interested in
a concrete slab 20 m long and weighing 400,000 N is supported by one pillar. A 19,600 N car is parked 8 meters from one end, whe
Elden [556K]

let the distance of pillar is "r" from one end of the slab

So here net torque must be balance with respect to pillar to be in balanced state

So here we will have

Mg(r - L/2) = mg(L/2 - 8)

here we know that

mg = 19600 N

Mg = 400,000 N

L = 20 m

from above equation we have

400,000(r - 10) = 19,600 (10 - 8)

r - 10 = 0.098

r = 10.098 m

so pillar is at distance 10.098 m from one end of the slab

3 0
3 years ago
A gas is placed in a storage tank at a pressure of 49.2 atm at 39.0C . As a safety device, a small metal plug in the tank is mad
Amiraneli [1.4K]

Answer:

The maximum pressure that will be attained in the tank before the plug melts and releases gas should be less than 74.26 atm.

Explanation:

To calculate the final pressure of the system, we use the equation given by Gay-Lussac Law. This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.

Mathematically,

\frac{P_1}{T_1}=\frac{P_2}{T_2}

where,

P_1\text{ and }T_1 are the initial pressure and temperature of the gas.

P_2\text{ and }T_2 are the final pressure and temperature of the gas.

We are given:

P_1=49.2 atm\\T_1=39.0^oC = 312.15 K\\P_2=?\\T_2=198^oC=471.15 K

Putting values in above equation, we get:

\frac{49.2atm }{312.15 K}=\frac{P_2}{471.15 K}\\\\P_2=74.26 atm

The maximum pressure that will be attained in the tank before the plug melts and releases gas should be less than 74.26 atm.

4 0
3 years ago
A spherical, conducting shell of inner radius r1= 10 cm and outer radius r2 = 15 cm carries a total charge Q = 15 μC . What is t
lutik1710 [3]

a) E = 0

b) 3.38\cdot 10^6 N/C

Explanation:

a)

We can solve this problem using Gauss theorem: the electric flux through a Gaussian surface of radius r must be equal to the charge contained by the sphere divided by the vacuum permittivity:

\int EdS=\frac{q}{\epsilon_0}

where

E is the electric field

q is the charge contained by the Gaussian surface

\epsilon_0 is the vacuum permittivity

Here we want to find the electric field at a distance of

r = 12 cm = 0.12 m

Here we are between the inner radius and the outer radius of the shell:

r_1 = 10 cm\\r_2 = 15 cm

However, we notice that the shell is conducting: this means that the charge inside the conductor will distribute over its outer surface.

This means that a Gaussian surface of radius r = 12 cm, which is smaller than the outer radius of the shell, will contain zero net charge:

q = 0

Therefore, the magnitude of the electric field is also zero:

E = 0

b)

Here we want to find the magnitude of the electric field at a distance of

r = 20 cm = 0.20 m

from the centre of the shell.

Outside the outer surface of the shell, the electric field is equivalent to that produced by a single-point charge of same magnitude Q concentrated at the centre of the shell.

Therefore, it is given by:

E=\frac{Q}{4\pi \epsilon_0 r^2}

where in this problem:

Q=15 \mu C = 15\cdot 10^{-6} C is the charge on the shell

r=20 cm = 0.20 m is the distance from the centre of the shell

Substituting, we find:

E=\frac{15\cdot 10^{-6}}{4\pi (8.85\cdot 10^{-12})(0.20)^2}=3.38\cdot 10^6 N/C

4 0
3 years ago
What the number ??? Help Please
elena55 [62]

Answer:

first number is 113 and the second number is 15

6 0
2 years ago
A 0.2 kg block sliding on a horizontal table slows down from 25 m/s to 20 m/s. How much energy does the block lose due to fricti
Papessa [141]

Answer:

the kinetic energy lost due to friction is 22.5 J

Explanation:

Given;

mass of the block, m = 0.2 kg

initial velocity of the block, u = 25 m/s

final velocity of the block, v = 20 m/s

The kinetic energy lost due to friction is calculated as;

\Delta K.E= K.E_f - K.E_i\\\\\Delta K.E= \frac{1}{2}mv^2 -  \frac{1}{2}mu^2\\\\\Delta K.E= \frac{1}{2}m(v^2 -u^2)\\\\\Delta K.E= \frac{1}{2} \times 0.2 (20^2 - 25^2)\\\\\Delta K.E= -22.5 \ J

Therefore, the kinetic energy lost due to friction is 22.5 J

7 0
2 years ago
Read 2 more answers
Other questions:
  • A longitudinal wave is a type of wave that transfers energy _____ to the direction of wave motion. A transverse wave, on the oth
    8·2 answers
  • A 1,200 kg dragster, starting from rest, reaches a maximum velocity of 140m/s in 5 seconds. At the 5 second mark, the dragster d
    12·1 answer
  • Kinetic and potential; what type of energy is each of the points
    7·1 answer
  • A person lowers a bucket into a well by turning the hand crank, as the drawing illustrates. The crank handle moves with a consta
    14·1 answer
  • Light travelling in one material enters another material in which it travels faster. The light wave will:
    11·1 answer
  • A boy is playing with a water hose, which has an exit area of
    6·1 answer
  • Suppose that an Egyptian farmer claims to have discovered a linen burial cloth used during Egypt's Middle Kingdom some 4000 year
    15·1 answer
  • In Cathode Ray Oscilloscope (CRO), if plates for vertical deflection are removed then what will be the wave pattern on the fluor
    15·1 answer
  • WILL GIVE YOU WHAT EVER YOU WANT JUST HELP ME
    7·1 answer
  • A weather forecaster uses a computational model on a Monday to predict the weather on Friday. Why might that forecast change? (1
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!