1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nignag [31]
3 years ago
11

A piston–cylinder device contains 0.78 kg of nitrogen gas at 140 kPa and 37°C. The gas is now compressed slowly in a polytropic

process during which PV1.3 = constant. The process ends when the volume is reduced by one-half. Determine the entropy change of nitrogen during this process. The gas constant of nitrogen is R = 0.2968 kJ/kg·K. The constant volume specific heat of nitrogen at room temperature is cv = 0.743 kJ/kg·K. (Round the final answer to five decimal places.)
Engineering
1 answer:
DiKsa [7]3 years ago
6 0

Answer:

The entropy change of nitrogen during this process. is - 0.32628 kJ/K.

Explanation:

Solution

Given that:

A piston cylinder device contains =0.78 kg of nitrogen gas

Temperature = 37°C

The  nitrogen gas constant of R = 0.2968 kJ/kg.K

At room temperature cv = 0.743 kJ/kg.K

Now,

We assume that at specific condition the nitrogen can be treated as an ideal gas

Nitrogen has a constant volume specific heat at room temperature.

Thus,

From the polytropic relation, we have the following below:

T₂/T₁ =(V₁/V₂)^ n-1 which is,

T₂ = T₁ ((V₁/V₂)^ n-1

= (310 K) (2)^1.3-1 = 381.7 K

So,

The entropy change of nitrogen is computed as follows:

ΔSN₂ = m (cv₁ avg ln T₂/T₁ + ln V₂/V₁)

= (0.78) ((0.743 kJ/kg .K) ln 381.7 K/310K + (0.2968 kJ/kg. K) ln (0.5))

= 0.57954 * 0.2080 +  (-0.2057)

= 0.12058 + (-0.2057) = -0.32628

Therefore the entropy change of nitrogen during this process. is - 0.32628 kJ/K.

You might be interested in
Ughhh my cramps hurt sm
kozerog [31]

Answer:

Explanation:Come

tomate

5 0
2 years ago
Read 2 more answers
If you get a flat in the front of your car, your car will:
juin [17]

Answer:

stop and might even crash

Explanation:

6 0
3 years ago
Create a program named PaintingDemo that instantiates an array of eight Room objects and demonstrates the Room methods. The Room
Serggg [28]

Answer:

Explanation:

Code used will be like

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace PaintingWall

{

class Room

{

public int length, width, height,Area,Gallons;

public Room(int l,int w,int h)

{

length = l;

width = w;

height = h;  

}

private int getLength()

{

return length;

}

private int getWidth()

{

return width;

}

private int getHeight()

{

return height;

}

public void WallAreaAndNumberGallons()

{

Area = getLength() * getHeight() * getWidth();

if (Area < 350)

{

Gallons = 1;

}

else if (Area > 350)

{

Gallons = 2;

}    

Console.WriteLine ("The area of the Room is " + Area);

Console.WriteLine("The number of gallons paint needed to paint the Room is " + Gallons);

}

 

}

class PaintingDemo

{

static void Main(string[] args)

{

int l, w, h;

Room[] r = new Room[8];

for (int i = 0; i <= 7; i++)

{

Console.WriteLine("Room "+(i+1));

Console.Write("Enter Length : ");

l = Convert.ToInt32(Console.ReadLine() );

Console.Write("Enter Width : ");

w = Convert.ToInt32(Console.ReadLine());

Console.Write("Enter Height : ");

h= Convert.ToInt32(Console.ReadLine());

r[i] = new Room(l,w,h);

Console.WriteLine();

}

for (int i = 0; i <= 7; i++)

{

Console.WriteLine("Room " + (i + 1));

r[i].WallAreaAndNumberGallons();

}

Console.ReadKey();  

}

}

}

3 0
3 years ago
Determine the required dimensions of a column with a square cross section to carry an axial compressive load of 6500 lb if its l
ycow [4]

Answer: 0.95 inches

Explanation:

A direct load on a column is considered or referred to as an axial compressive load. A direct concentric load is considered axial. If the load is off center it is termed eccentric and is no longer axially applied.

The length= 64 inches

Ends are fixed Le= 64/2 = 32 inches

Factor Of Safety (FOS) = 3. 0

E= 10.6× 10^6 ps

σy= 4000ps

The square cross-section= ia^4/12

PE= π^2EI/Le^2

6500= 3.142^2 × 10^6 × a^4/12×32^2

a^4= 0.81 => a=0.81 inches => a=0.95 inches

Given σy= 4000ps

σallowable= σy/3= 40000/3= 13333. 33psi

Load acting= 6500

Area= a^2= 0.95 ×0.95= 0.9025

σactual=6500/0.9025

σ actual < σallowable

The dimension a= 0.95 inches

3 0
3 years ago
Read 2 more answers
Una frase de: ama la vida quien___________________________________
TEA [102]

Answer:

A phrase from: who loves life

Explanation:

5 0
3 years ago
Other questions:
  • 11 Notează, în caiet, trăsăturile personajelor ce se pot
    13·1 answer
  • What is CQ Thread Ball Valves​
    10·2 answers
  • The phrase "positive to positive, negative to ground" is correct when jump starting a car.
    9·1 answer
  • Which sentence about the technology design process is true
    12·1 answer
  • An existing building is suffering from cracks in the exterior walls. The investigating engineer wants to ensure that the foundat
    11·1 answer
  • What are the basic parts of a radio system
    15·1 answer
  • which one of the following appliance parts gets the hardest services? A. Heating elementwhich one of the following appliance par
    10·2 answers
  • Select the correct answer. Jude is a mechanical engineer. He works in the automobile industry. He is creating a prototype of an
    13·1 answer
  • 7 to 1 inch above the stock
    5·1 answer
  • Policeman says, "Son, you can't stay here"
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!