Answer:
See explaination
Explanation:
#include <iostream>
#include<string.h>
using namespace std;
bool isPalindrome(string str, int lower, int upper){
if(str.length() == 0 || lower>=upper){
return true;
}
else{
if(str.at(lower) == str.at(upper)){
return isPalindrome(str,lower+1,upper-1);
}
else{
return false;
}
}
}
int main(){
string input;
cout<<"Enter string: ";
cin>>input;
if(isPalindrome(input,0,input.length()-1)){
cout<<input<<" is a palindrome"<<endl;
}
else{
cout<<input<<" is NOT a palindrome"<<endl;
}
return 0;
}
I’m a concrete mason myself and I can tell you it is a pain in the butt to Roto hammer a hole into the concrete to put the pipe in it’s a lot easier to just pour the concrete around it
Friction losses in pipes can be reduced by decreasing the length of the pipes, reducing the surface roughness of the pipes, and increasing the pipe diameter. Thus, options (c),(e), and (f) hold correct answers.
Friction loss is a measure of the amount of energy a piping system loses because flowing fluids meet resistance. As fluids flow through the pipes, they carry energy with them. Unfortunately, whenever there is resistance to the flow rate, it diverts fluids, and energy escapes. These opposing forces result in friction loss in pipes.
Friction loss in pipes can decrease the efficiency of the functions of pipes. These are a few ways by which friction loss in pipes can be reduced and the efficiency of the piping system can be boosted:
- <u><em>Decrease the length of the pipes</em></u>: By decreasing pipe lengths and avoiding the use of sharp turns, fittings, and tees, whenever possible result in a more natural path for fluids to flow.
- <u><em>Reduce the surface roughness of the pipes</em></u>: By reducing the interior surface roughness of pipes, a smooth and clearer path is provided for liquids to flow.
- <u><em>Increase the pipe diameter: </em></u>By widening the diameters of pipes, it is ensured that fluids squeeze through pipes easily.
You can learn more about friction losses at
brainly.com/question/13348561
#SPJ4
Answer:

Explanation:
Approximately, we can use the ideal gas law, below we see how we can deduce the density from general gas equation. To do this, remember that the number of moles n is equal to
, where m is the mass and M the molar mass of the gas, and the density is
.
For air
and 
So, 

Answer: Doctrine of ratification
Explanation:Doctrine of ratification tries to show that a person who is taking so much a time to complain has indicated that he agrees even if he doesn't without a written consent. This is to eliminate undue waste of time in business, legal an other proceedings requiring consent of both parties.
Doctrine of ratification can either be implied or expressed
Implied ratification is the type of ratification where a persons actions or body language can be seen that he has accepted.
Express ratification is a ratification where a person intentionally accept by showing either through written or verbally.