1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zysi [14]
3 years ago
8

The suns energy reaches the sun by Conduction Convection Radiation Fusion

Physics
2 answers:
amid [387]3 years ago
8 0

Answer:

Radiation

Explanation:

The sun energy reaches us by Radiation.

dlinn [17]3 years ago
7 0
,When the Sun's energy moves through space, it reaches Earth's atmosphere and finally the surface. This radiant solar energy warms the atmosphere and becomes heat energy. This heat energy is transferred throughout the planet's systems in three ways: by radiation, conduction, and convection
You might be interested in
If 0.035pC of charge is transferred via the movement of Al3+ ions, how's many of these must be transferred in total? Please add
mr Goodwill [35]

Each Al^+^3 ion contains three extra protons. Hence, the extra charge on each  Al^+^3 = 3 \times 1.6 \times 10^-^1^9 C

Total charge = 0.035 pC

Total charge (Q) = 0.035 \times 10^-^1^2 C

Let the number of Al^+^3 ions be n.

According to question:

n \times 3 \times 1.6 \times 10^-^1^9 =0.035 \times 10^-^1^2

n = \frac{0.035 \times 10^-^1^2}{3 \times 1.6 \times 10^-^1^9}

n = 7.29167 \times 10^4

n = 72917

Hence, the total number of ions needed to be transferred is 72917

3 0
3 years ago
There. That is better.
mihalych1998 [28]

a
a
b
b
a
b
a
This will really help you learn a lot.

6 0
4 years ago
Two cylinders each contain 0.30 mol of a diatomic gas at 320 K and a pressure of 3.0 atm. Cylinder A expands isothermally and cy
Svetllana [295]

Answer :

(a). The final temperature of the gas in the cylinder A is 320 K.

(b). The final temperature of the gas in the cylinder B is 233.7 K.

(c). The final volume of the gas in the cylinder A is 7.86\times10^{-3}\ m^3

(d). The final volume of the gas in the cylinder B is 5.7\times10^{-3}\ m^3

Explanation :

Given that,

Number of mole n = 0.30 mol

Initial temperature = 320 K

Pressure = 3.0 atm

Final pressure = 1.0 atm

We need to calculate the initial volume

Using formula of ideal gas

P_{1}V_{1}=nRT

V_{1}=\dfrac{nRT}{P_{1}}

Put the value into the formula

V_{1}=\dfrac{0.30\times8.314\times320}{3.039\times10^{5}}

V_{1}=2.62\times10^{-3}\ m^3

(a). We need to calculate the final temperature of the gas in the cylinder A

Using formula of ideal gas

In isothermally, the temperature is not change.

So, the final temperature of the gas in the cylinder A is 320 K.

(b). We need to calculate the final temperature of the gas in the cylinder B

Using formula of ideal gas

T_{2}=T_{1}\times(\dfrac{P_{1}}{P_{2}})^{\frac{1}{\gamma}-1}

Put the value into the formula

T_{2}=320\times(\dfrac{3}{1})^{\frac{1}{1.4}-1}

T_{2}=233.7\ K

(c). We need to calculate the final volume of the gas in the cylinder A

Using formula of volume of the gas

P_{1}V_{1}=P_{2}V_{2}

V_{2}=\dfrac{P_{1}V_{1}}{P_{2}}

Put the value into the formula

V_{2}=\dfrac{3\times2.62\times10^{-3}}{1}

V_{2}=0.00786\ m^3

V_{2}=7.86\times10^{-3}\ m^3

(d). We need to calculate the final volume of the gas in the cylinder B

Using formula of volume of the gas

V_{2}=V_{1}(\dfrac{P_{1}}{P_{2}})^{\frac{1}{\gamma}}

V_{2}=2.62\times10^{-3}\times(\dfrac{3}{1})^{\frac{1}{1.4}}

V_{2}=0.0057\ m^3

V_{2}=5.7\times10^{-3}\ m^3

Hence, (a). The final temperature of the gas in the cylinder A is 320 K.

(b). The final temperature of the gas in the cylinder B is 233.7 K.

(c). The final volume of the gas in the cylinder A is 7.86\times10^{-3}\ m^3

(d). The final volume of the gas in the cylinder B is 5.7\times10^{-3}\ m^3

6 0
3 years ago
A uniform plank of length 5.0 m and weight 225 N rests horizontally on two supports, with 1.1 m of the plank hanging over the ri
lawyer [7]

Answer:

x = 0.6034 m

Explanation:

Given

L = 5 m

Wplank = 225 N

Wman = 522 N

d = 1.1 m

x = ?

We have to take sum of torques about the right support point.  If the board is just about to tip, the normal force from the left support will be going to zero.  So the only torques come from the weight of the plank and the weight of the man.

∑τ = 0  ⇒     τ₁ + τ₂ = 0  

Torque come from the weight of the plank = τ₁

Torque come from the weight of the man = τ₂

⇒  τ₁ = + (5 - 1.1)*(225/5)*((5 - 1.1)/2) - (1.1)*(225/5)*((1.1)/2) = 315 N-m (counterclockwise)

⇒  τ₂ = Wman*x = 522 N*x   (clockwise)

then

τ₁ + τ₂ = (315 N-m) + (- 522 N*x) = 0

⇒  x = 0.6034 m

7 0
3 years ago
Which of the following objects exerts a gravitational force?
kompoz [17]

the earth exerts a gravitational force

4 0
3 years ago
Read 2 more answers
Other questions:
  • Earl is using his hands to hold a metal pan 10 centimeters above a hot burner. How can this scenario be changed to demonstrate c
    5·2 answers
  • imagine that a tank is filled with water the hight of the liquid column is 7 meters and the area is 1.5 sq meters (m™). what's t
    14·1 answer
  • which of the following would decrease current flow in a circuit made originally from 1.5 volt battery, a loop of wire and a swit
    11·1 answer
  • The distance from one Crest to the next Crest is the blank
    12·2 answers
  • A mass of 100 g stretches a spring 5 cm. If the mass is set in motion from its equilibrium position with a downward velocity of
    11·1 answer
  • A 58-kg boy swings a baseball bat, which causes a 0.140-kg baseball to move toward 3rd base with a velocity of 38.0 m/s.
    6·1 answer
  • What is the work required for a penguin to push a box 2 meters with a force of 8 newtons?
    8·1 answer
  • If a vector that is 3 cm long represents 30 km/h what velocity does a 5cm long vector which is drawn using the same scale
    11·1 answer
  • The towline exerts a force of p = 4 kn at the end of the 20-m-long crane boom. if u = 30, determine the placement x of the hook
    7·1 answer
  • Two representative elements are in the same period of the periodic table. Which statement correctly describes the atoms of the t
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!