Answer: The energy incident on the solar panel during that day is
.
Explanation:
Given: Mass = 250 kg
Initial temperature = 
Final temperature = 
Specific heat capacity = 4200 
Formula used to calculate the energy is as follows.

where,
q = heat energy
m = mass of substance
C = specific heat capacity
= initial temperature
= final temperature
Substitute the values into above formula as follows.

As it is given that water absorbs 25% of the energy incident on the solar panel. Hence, energy incident on the solar panel can be calculated as follows.

Thus, we can conclude that the energy incident on the solar panel during that day is
.
It transfers and changes into different types of energy, this is why the ground feels hot when something moves fast over it.
(1.a) The surface area being vibrated by the time the sound reaches the listener is 5,026.55 m².
(1.b) The intensity of the sound wave as it reaches the person listening is 0.02 W/m².
(1.c) The relative intensity of the sound as heard by the listener is 103 dB.
(2.a) The speed of sound if the air temperature is 15⁰C is 340.3 m/s.
(2.b) The frequency of the sound heard by the suspect is 614.3 Hz.
<h3>
Surface area being vibrated</h3>
The surface area being vibrated by the time the sound reaches the listener is calculated as follows;
A = 4πr²
A = 4π x (20)²
A = 5,026.55 m²
<h3>Intensity of the sound</h3>
The intensity of the sound is calculated as follows;
I = P/A
I = (100) / (5,026.55)
I = 0.02 W/m²
<h3>Relative intensity of the sound</h3>

<h3>Speed of sound at the given temperature</h3>

<h3>Frequency of the sound</h3>
The frequency of the sound heard is determined by applying Doppler effect.

where;
- -v₀ is velocity of the observer moving away from the source
- -vs is the velocity of the source moving towards the observer
- fs is the source frequency
- fo is the observed frequency
- v is speed of sound


Learn more about intensity of sound here: brainly.com/question/17062836
I think it is when shot scrapes off the top of the turf