A spring is an object that can be deformed by a force and then return to its original shape after the force is removed.
Springs come in a huge variety of different forms, but the simple metal coil spring is probably the most familiar. Springs are an essential part of almost all moderately complex mechanical devices; from ball-point pens to racing car engines.
There is nothing particularly magical about the shape of a coil spring that makes it behave like a spring. The 'springiness', or more correctly, the elasticity is a fundamental property of the wire that the spring is made from. A long straight metal wire also has the ability to ‘spring back’ following a stretching or twisting action. Winding the wire into a spring just allows us to exploit the properties of a long piece of wire in a small space. This is much more convenient for building mechanical devices.
Answer:
3.5m/s^2
Explanation:
From Newton's second Law of Motion
F = ma
Where F is the applied force, m is the mass of the object and a is the acceleration.
F = 350 N
Mass = 100kg
350N = 100×a
a = 350/100
a = 3.5m/s^2
The acceleration of the object will be 3.5m/s^2
What is your question exactly? I'm confused?
You can mark, lift and clean a ball on the green, but it's a violation to do so when another ball is in motion, as your ball might influence the outcome of that stroke. You can also mark and clean your ball in some instances when it's off the green: cleaning it, for example, just to the point where you can identify it.