<span>Electromagnetic
radiation are represented in waves. Each type of wave has a certain shape and
length. The distance between two peaks in a wave is called the wavelength. It
is indirectly related to the frequency which is the number of wave that pass
per unit of time. Wavelength is equal to the speed of light divided by the
frequency. We calculate as follows:
Wavelength = </span>300,000,000 m/sec / <span>650,000,000,000,000 per second
Wavelength = 4.62x10^-4 m</span>
Answer:
temperature and mass
Explanation:
- The higher the temperature of a given quantity of a substance, more is its thermal energy.
- If a substance contains more mass, this also implies that the object has more particles in it . hence, it has high thermal energy.
<em><u>A</u></em><em><u>d</u></em><em><u>d</u></em><em><u>i</u></em><em><u>t</u></em><em><u>i</u></em><em><u>o</u></em><em><u>n</u></em><em><u>a</u></em><em><u>l</u></em><em><u> </u></em><em><u>I</u></em><em><u>n</u></em><em><u>f</u></em><em><u>o</u></em><em><u>r</u></em><em><u>m</u></em><em><u>a</u></em><em><u>t</u></em><em><u>i</u></em><em><u>o</u></em><em><u>n</u></em><em><u> </u></em>:
- Temperature is a measure of the average kinetic energy of the particles of a substance.
- The thermal energy of an object depends on three factors:
- number of molecules in the object
- temperature of the object.
- thermal energy it has.
The correct answer is B. Calcite
Explanation:
Mohs hardness scale indicates the hardness of minerals using a scale from 1 to 10 as well as defining the objects or tools that can be used to scratch the minerals. These two features of minerals are shown in the table of the image. About this, it is shown gypsum and talc can be scratched by just a fingernail, considering minerals with a hardness of 2.5 or below can be scratched by a fingernail. In the case of calcite that has a hardness of 3, this cannot be scratched by a fingernail, but it can be scratched by a penny, which works for minerals with a hardness of 3.5 or below. Thus, the correct answer is Calcite.
Answer:
7.5 m/s
Explanation:
We can find its velocity when it reaches the buoy by applying one of Newton's equations of motion:

where v = final velocity
u = initial velocity
a = acceleration
s = distance traveled
From the question:
u = 28 m/s
a = -4 
s = 91 m
Therefore:

The velocity of the boat when it reaches the buoy is 7.5 m/s.
Explanation:
Artificial gravity can be created using a centripetal force. A centripetal force directed towards the center of the turn is required for any object to move in a circular path. In the context of a rotating space station it is the normal force provided by the spacecraft's hull that acts as centripetal force.
Hope it helps.