1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
morpeh [17]
3 years ago
13

In a food chain, which trophic level contains the greatest amount of energy?

Physics
1 answer:
evablogger [386]3 years ago
6 0
I believe the correct answer from the choices listed above is option B. In a food chain. it is the producers trophic level that contains <span>the greatest amount of energy since it is the very start of the chain. Most of the energy are being stored and passed to the next organism. Hope this answers the question.</span>
You might be interested in
A 1.1-kg object is suspended from a vertical spring whose spring constant is 120 N/m. (a) Find the amount by which the spring is
andriy [413]

Answer:

e = 0.0898m

v = 2.07m/s

Explanation:

a) According to Hooke's law

F = ke

e is the extension

k is the spring constant

Since F = mg

mg = ke

e = mg/k

Substitute the given value

e = 1.1(9.8)/120

e = 10.78/120

e = 0.0898m

Hence it is stretched by 0.0898m from its unstrained length

2) Total Energy = PE+KE+Elastic potential

Total Energy = mgh +1/2mv²+1/2ke²

Substitute the given value

5.0= 1.1(9.8)(0.2)+1/2(1.1)v²+1/2(120)(0.0898)²

Solve for v

5.0 = 2.156+0.55v²+0.48338

5.0-2.156-0.48338= 0.55v²

2.36 =0.55v²

v² = 2.36/0.55

v² = 4.29

v ,= √4.29

v = 2.07m/s

Hence the required velocity is 9.28m/s

4 0
3 years ago
A girl of mass m1=60 kilograms springs from a trampoline with an initial upward velocity of v1=8.0 meters per second. At height
AleksandrR [38]

a) 5.0 m/s

This first part of the problem can be solved by using the conservation of energy. In fact, the mechanical energy of the girl just after she jumps is equal to her kinetic energy:

E_i=\frac{1}{2}m_1v_1^2

where m1 = 60 kg is the girl's mass and v1 = 8.0 m/s is her initial velocity.

When she reaches the height of h = 2.0 m, her mechanical energy is sum of kinetic energy and potential energy:

E_f = \frac{1}{2}m_1 v_2 ^2 + m_1 gh

where v2 is the new speed of the girl (before grabbing the box), and h = 2.0m. Equalizing the two equations (because the mechanical energy is conserved), we find

\frac{1}{2}m_1 v_1^2 = \frac{1}{2}m_1 v_2 ^2 + m_1 gh\\v_1^2 = v_2^2 +2gh\\v_2 = \sqrt{v_1^2 -2gh}=\sqrt{(8.0 m/s)^2-(2)(9.8 m/s^2)(2.0 m)}=5.0 m/s

b) 4.0 m/s

After the girl grab the box, the total momentum of the system must be conserved. This means that the initial momentum of the girl must be equal to the total momentum of the girl+box after the girl catches the box:

p_i = p_f\\m_1 v_2 = (m_1 + m_2) v_3

where m2 = 15 kg is the mass of the box. Solving the equation for v3, the combined velocity of the girl+box, we find

v_3 = \frac{m_1 v_2}{m_1 + m_2}=\frac{(60 kg)(5.0 m/s)}{60 kg+15 kg}=4 m/s

c) 2.8 m

We can use again the law of conservation of energy. The total mechanical energy of the girl after she catches the box is sum of kinetic energy and potential energy:

E_i = \frac{1}{2}(m_1+m_2) v_3^2 + (m_1+m_2)gh=\frac{1}{2}(75 kg)(4 m/s)^2+(75 kg)(9.8 m/s^2)(2.0m)=2070 J

While at the maximum height, the speed is zero, so all the mechanical energy is just potential energy:

E_f = (m_1 +m_2)gh_{max}

where h_max is the maximum height. Equalizing the two expressions (because the mechanical energy must be conserved) and solving for h_max, we find

E_i = (m_1+m_2)gh_{max}\\h_{max}=\frac{E_i}{(m_1+m_2)g}=\frac{2070 J}{(75 kg)(9.8 m/s^2)}=2.8 m

4 0
3 years ago
Describe the proton gradient generated by the electron transport chain
Oksana_A [137]

Answer:

The proton gradient produced by proton pumping during the electron transport chain is used to synthesize ATP. Protons flow down their concentration gradient into the matrix through the membrane protein ATP synthase, causing it to spin (like a water wheel) and catalyze conversion of ADP to ATP.

Explanation:

4 0
3 years ago
(Astronomy)
olya-2409 [2.1K]

Answer:c ITs C ^w^

Explanation:

4 0
3 years ago
If a boat and its riders have a mass of 900 kg and the boat drifts in at 1.4 m/s how much work does sam do to stop it?
Rama09 [41]
The initial kinetic energy of the boat and its rider is
K_i =  \frac{1}{2} mv_i^2 =  \frac{1}{2}(900 kg)(1.4 m/s)^2=882 J

After Sam stops it, the final kinetic energy of the boat+rider is
K_f = 0 J
because its final velocity is zero.

For the law of conservation of energy, the work done by Sam is the variation of kinetic energy of the system:
W=K_f-K_i =0-882 J=-882 J
where the negative sign is due to the fact that the force Sam is applying goes against the direction of motion of the boat.
6 0
3 years ago
Other questions:
  • A woman fires a rifle with barrel length of 0.5400 m. Let (0, 0) be where the 125 g bullet begins to move, and the bullet travel
    15·1 answer
  • When boating in shallow areas or seagrass beds, you see a mud trail in your wake where your boat has churned up the bottom. If y
    5·1 answer
  • If the particles of the medium are vibrating to and fro in the same direction of energy transport, then the wave is a ____ wave.
    8·1 answer
  • Any help is appreciated! ​
    12·1 answer
  • Multiply 2 cm by 100 to convert to meters​
    13·1 answer
  • Which structure is represented by letter B?
    5·1 answer
  • What do we mean by "Ohmic"?
    6·1 answer
  • Someone please help meee
    6·2 answers
  • A sprinter accelerates from rest to a top speed of 24 km/h in 2 seconds and then runs at a constant velocity for the rest of the
    5·1 answer
  • How do I calculate the amount of work done using the information on the graphs given?​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!