Answer:
Explanation:
velocity of projection, vo = 381 m/s
angle of projection, θ = 73.5°
The formula for the range is


R = 8067.4 m
Range in shorten by 34.1 %
So, the new range is
R' = 8067.4 - 34.1 x 8067.4/100
R' = 5316.4 m
4.2 liters..... there are 1,000 mL in a liter and there is a total of 4200 mL in this case which is divided by 1000 which gives you 4.2 liters.
Explanation:
The electric field at a distance r from the charged particle is given by :

k is electrostatic constant
if r = 2 m, electric field is given by :

If r = 1 m, electric field is given by :

Dividing equation (1) and (2) we get :

So, at a point 1 m from the particle, the electric field is 4 times of the electric field at a point 2 m.
Answer:
B. decreases while his angular speed remains unchanged.
Explanation:
His angular speed will always be the same as the wheel's angular speed, which remains constant as it's in uniform motion. As for linear speed, which is defined as the product of angular speed and distance r to the center of rotation, and his distance to center is decreasing, his linear speed must be decreasing as well.
Answer:
A) If you halve the wavelength, the electromagnetic radiation energy will double.
B) The energy of the electromagnetic radiation will halve if you halve the wavenumber.
C) When the frequency of the light is doubled, its energy will double.
Explanation:
The function for the light frequency is given as
The energy supplied to each electron is doubled by halving the wavelength, nearly doubling its kinetic energy by two after it is free from the metal. It is important to remember that for a given period of time, the number of electrons ejected will remain constant.
Cheers