Answer:
A. Always true
Explanation:
This is because, the buoyancy force is always present whenever and object is placed in a fluid. The magnitude of this buoyancy force is always equal to the weight of the fluid displaced by the object according to Archimedes' principle. This principle is true irrespective of whether the object floats or not. When any object is inserted in a fluid, the buoyancy force is always present irrespective of whether it floats or not.
Answer:
with right hand grip rule
3. A- south
B- north
C- north
D- south
E- south
F- north
sorry idk what 1st & 2nd question means
Work formula:
W = F * d
F 1 = 40 N, d 1 = 6 m;
F 2 = 30 N; d 2 = 6 m.
W ( Cindy ) = 40 * 6 = 240 Nm
W ( Andy ) = 30 * 6 = 180 Nm
The difference of their amounts if work:
240 Nm - 180 Nm = 60 nm
hope it helps!
The box is kept in motion at constant velocity by a force of F=99 N. Constant velocity means there is no acceleration, so the resultant of the forces acting on the box is zero. Apart from the force F pushing the box, there is only another force acting on it in the horizontal direction: the frictional force

which acts in the opposite direction of the motion, so in the opposite direction of F.
Therefore, since the resultant of the two forces must be zero,

so

The frictional force can be rewritten as

where

,

. Re-arranging, we can solve this equation to find

, the coefficient of dynamic friction:
Answer:
I'm not great at science, but I believe that the answer is elastic potential energy.
Explanation:
Components of mechanical systems store elastic potential energy if they are deformed when forces are applied to the system. Energy is transferred to an object by work when an external force displaces or deforms the object.